Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Arduino Automatic Slding Door For The Garage
Download Arduino Automatic Slding Door For The Garage full books in PDF, epub, and Kindle. Read online Arduino Automatic Slding Door For The Garage ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Arduino Automatic Slding Door for the Garage by : Mehmet AVCU
Download or read book Arduino Automatic Slding Door for the Garage written by Mehmet AVCU and published by arduino instructor. This book was released on 2020-12-27 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arduino Automatic Slding Door for the Garage
Book Synopsis Sun Tracker, Automatic Solar- Tracking, Sun- Tracking Systems, Solar Trackers and Automatic Sun Tracker Systems 太陽能跟踪 Солнечная слежения by : Gerro Prinsloo
Download or read book Sun Tracker, Automatic Solar- Tracking, Sun- Tracking Systems, Solar Trackers and Automatic Sun Tracker Systems 太陽能跟踪 Солнечная слежения written by Gerro Prinsloo and published by Gerro Prinsloo. This book was released on 2014-10-12 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details Solar-Tracking, Automatic Sun-Tracking-Systems and Solar-Trackers. Book and literature review is ideal for sun and moon tracking in solar applications for sun-rich countries such as the USA, Spain, Portugal, Mediterranean, Italy, Greece, Mexico, Portugal, China, India, Brazil, Chili, Argentina, South America, UAE, Saudi Arabia, Middle East, Iran, Iraq, etc. A solar tracker is a device that orients a payload toward the sun. Like a satellite tracker or moon tracker, it tracks the celestial object in the sky on its orbital path of apparent movement. A programmable computer based solar tracking device includes principles of solar tracking, solar tracking systems, as well as microcontroller, microprocessor and/or PC based solar tracking control to orientate solar reflectors, solar lenses, photovoltaic panels or other optical configurations towards the sun. Motorized space frames and kinematic systems ensure motion dynamics and employ drive technology and gearing principles to steer optical configurations such as mangin, parabolic, conic, or cassegrain solar energy collectors to face the sun and follow the sun movement contour continuously. In harnessing power from the sun through a solar tracker or practical solar tracking system, renewable energy control automation systems require automatic solar tracking software and solar position algorithms to accomplish dynamic motion control with control automation architecture, circuit boards and hardware. On-axis sun tracking system such as the altitude-azimuth dual axis or multi-axis solar tracker systems use a sun tracking algorithm or ray tracing sensors or software to ensure the sun's passage through the sky is traced with high precision in automated solar tracker applications, right through summer solstice, solar equinox and winter solstice. From sun tracing software perspective, the sonnet Tracing The Sun has a literal meaning. Within the context of sun track and trace, this book explains that the sun's daily path across the sky is directed by relatively simple principles, and if grasped/understood, then it is relatively easy to trace the sun with sun following software. Sun position computer software for tracing the sun are available as open source code, sources that is listed in this book. Ironically there was even a system called sun chaser, said to have been a solar positioner system known for chasing the sun throughout the day. Using solar equations in an electronic circuit for solar tracking is quite simple, even if you are a novice, but mathematical solar equations are over complicated by academic experts and professors in text-books, journal articles and internet websites. In terms of solar hobbies, scholars, students and Hobbyist's looking at solar tracking electronics or PC programs for solar tracking are usually overcome by the sheer volume of scientific material and internet resources, which leaves many developers in frustration when search for simple experimental solar tracking source-code for their on-axis sun-tracking systems. This booklet will simplify the search for the mystical sun tracking formulas for your sun tracker innovation and help you develop your own autonomous solar tracking controller. By directing the solar collector directly into the sun, a solar harvesting means or device can harness sunlight or thermal heat. This is achieved with the help of sun angle formulas, solar angle formulas or solar tracking procedures for the calculation of sun's position in the sky. Automatic sun tracking system software includes algorithms for solar altitude azimuth angle calculations required in following the sun across the sky. In using the longitude, latitude GPS coordinates of the solar tracker location, these sun tracking software tools supports precision solar tracking by determining the solar altitude-azimuth coordinates for the sun trajectory in altitude-azimuth tracking at the tracker location, using certain sun angle formulas in sun vector calculations. Instead of follow the sun software, a sun tracking sensor such as a sun sensor or webcam or video camera with vision based sun following image processing software can also be used to determine the position of the sun optically. Such optical feedback devices are often used in solar panel tracking systems and dish tracking systems. Dynamic sun tracing is also used in solar surveying, DNI analyser and sun surveying systems that build solar infographics maps with solar radiance, irradiance and DNI models for GIS (geographical information system). In this way geospatial methods on solar/environment interaction makes use use of geospatial technologies (GIS, Remote Sensing, and Cartography).Climatic data and weather station or weather center data, as well as queries from sky servers and solar resource database systems (i.e. on DB2, Sybase, Oracle, SQL, MySQL) may also be associated with solar GIS maps. In such solar resource modelling systems, a pyranometer or solarimeter is normally used in addition to measure direct and indirect, scattered, dispersed, reflective radiation for a particular geographical location. Sunlight analysis is important in flash photography where photographic lighting are important for photographers. GIS systems are used by architects who add sun shadow applets to study architectural shading or sun shadow analysis, solar flux calculations, optical modelling or to perform weather modelling. Such systems often employ a computer operated telescope type mechanism with ray tracing program software as a solar navigator or sun tracer that determines the solar position and intensity. The purpose of this booklet is to assist developers to track and trace suitable source-code and solar tracking algorithms for their application, whether a hobbyist, scientist, technician or engineer. Many open-source sun following and tracking algorithms and source-code for solar tracking programs and modules are freely available to download on the internet today. Certain proprietary solar tracker kits and solar tracking controllers include a software development kit SDK for its application programming interface API attributes (Pebble). Widget libraries, widget toolkits, GUI toolkit and UX libraries with graphical control elements are also available to construct the graphical user interface (GUI) for your solar tracking or solar power monitoring program. The solar library used by solar position calculators, solar simulation software and solar contour calculators include machine program code for the solar hardware controller which are software programmed into Micro-controllers, Programmable Logic Controllers PLC, programmable gate arrays, Arduino processor or PIC processor. PC based solar tracking is also high in demand using C++, Visual Basic VB, as well as MS Windows, Linux and Apple Mac based operating systems for sun path tables on Matlab, Excel. Some books and internet webpages use other terms, such as: sun angle calculator, sun position calculator or solar angle calculator. As said, such software code calculate the solar azimuth angle, solar altitude angle, solar elevation angle or the solar Zenith angle (Zenith solar angle is simply referenced from vertical plane, the mirror of the elevation angle measured from the horizontal or ground plane level). Similar software code is also used in solar calculator apps or the solar power calculator apps for IOS and Android smartphone devices. Most of these smartphone solar mobile apps show the sun path and sun-angles for any location and date over a 24 hour period. Some smartphones include augmented reality features in which you can physically see and look at the solar path through your cell phone camera or mobile phone camera at your phone's specific GPS location. In the computer programming and digital signal processing (DSP) environment, (free/open source) program code are available for VB, .Net, Delphi, Python, C, C+, C++, Swift, ADM, F, Flash, Basic, QBasic, GBasic, KBasic, SIMPL language, Squirrel, Solaris, Assembly language on operating systems such as MS Windows, Apple Mac, DOS or Linux OS. Software algorithms predicting position of the sun in the sky are commonly available as graphical programming platforms such as Matlab (Mathworks), Simulink models, Java applets, TRNSYS simulations, Scada system apps, Labview module, Beckhoff TwinCAT (Visual Studio), Siemens SPA, mobile and iphone apps, Android or iOS tablet apps, and so forth. At the same time, PLC software code for a range of sun tracking automation technology can follow the profile of sun in sky for Siemens, HP, Panasonic, ABB, Allan Bradley, OMRON, SEW, Festo, Beckhoff, Rockwell, Schneider, Endress Hauser, Fudji electric. Honeywell, Fuchs, Yokonawa, or Muthibishi platforms. Sun path projection software are also available for a range of modular IPC embedded PC motherboards, Industrial PC, PLC (Programmable Logic Controller) and PAC (Programmable Automation Controller) such as the Siemens S7-1200 or Siemens Logo, Beckhoff IPC or CX series, OMRON PLC, Ercam PLC, AC500plc ABB, National Instruments NI PXI or NI cRIO, PIC processor, Intel 8051/8085, IBM (Cell, Power, Brain or Truenorth series), FPGA (Xilinx Altera Nios), Xeon, Atmel megaAVR, or Arduino AtMega microcontroller, with servo motor, stepper motor, direct current DC pulse width modulation PWM (current driver) or alternating current AC SPS or IPC variable frequency drives VFD motor drives (also termed adjustable-frequency drive, variable-speed drive, AC drive, micro drive or inverter drive) for electrical, mechatronic, pneumatic, or hydraulic solar tracking actuators. The above motion control and robot control systems include analogue or digital interfacing ports on the processors to allow for tracker angle orientation feedback control through one or a combination of angle sensor or angle encoder, shaft encoder, precision encoder, optical encoder, magnetic encoder, direction encoder, rotational encoder, chip encoder, tilt sensor, inclination sensor, or pitch sensor. Note that the tracker's elevation or zenith axis angle may measured using an altitude angle-, declination angle-, inclination angle-, pitch angle-, or vertical angle-, zenith angle- sensor or inclinometer. Similarly the tracker's azimuth axis angle be measured with a azimuth angle-, horizontal angle-, or roll angle- sensor. Chip integrated accelerometer magnetometer gyroscope type angle sensors can also be used to calculate displacement. Other options include the use of thermal imaging systems such as a Fluke thermal imager, or robotic or vision based solar tracker systems that employ face tracking, head tracking, hand tracking, eye tracking and car tracking principles in solar tracking. With unattended decentralised rural, island, isolated, or autonomous off-grid power installations, remote control, monitoring, data acquisition, digital datalogging and online measurement and verification equipment becomes crucial. It assists the operator with supervisory control to monitor the efficiency of remote renewable energy resources and systems and provide valuable web-based feedback in terms of CO2 and clean development mechanism (CDM) reporting. A power quality analyser for diagnostics through internet, WiFi and cellular mobile links is most valuable in frontline troubleshooting and predictive maintenance, where quick diagnostic analysis is required to detect and prevent power quality issues. Solar tracker applications cover a wide spectrum of solar energy and concentrated solar devices, including solar power generation, solar desalination, solar water purification, solar steam generation, solar electricity generation, solar industrial process heat, solar thermal heat storage, solar food dryers, solar water pumping, hydrogen production from methane or producing hydrogen and oxygen from water (HHO) through electrolysis. Many patented or non-patented solar apparatus include tracking in solar apparatus for solar electric generator, solar desalinator, solar steam engine, solar ice maker, solar water purifier, solar cooling, solar refrigeration, USB solar charger, solar phone charging, portable solar charging tracker, solar coffee brewing, solar cooking or solar dying means. Your project may be the next breakthrough or patent, but your invention is held back by frustration in search for the sun tracker you require for your solar powered appliance, solar generator, solar tracker robot, solar freezer, solar cooker, solar drier, solar pump, solar freezer, or solar dryer project. Whether your solar electronic circuit diagram include a simplified solar controller design in a solar electricity project, solar power kit, solar hobby kit, solar steam generator, solar hot water system, solar ice maker, solar desalinator, hobbyist solar panels, hobby robot, or if you are developing professional or hobby electronics for a solar utility or micro scale solar powerplant for your own solar farm or solar farming, this publication may help accelerate the development of your solar tracking innovation. Lately, solar polygeneration, solar trigeneration (solar triple generation), and solar quad generation (adding delivery of steam, liquid/gaseous fuel, or capture food-grade CO$_2$) systems have need for automatic solar tracking. These systems are known for significant efficiency increases in energy yield as a result of the integration and re-use of waste or residual heat and are suitable for compact packaged micro solar powerplants that could be manufactured and transported in kit-form and operate on a plug-and play basis. Typical hybrid solar power systems include compact or packaged solar micro combined heat and power (CHP or mCHP) or solar micro combined, cooling, heating and power (CCHP, CHPC, mCCHP, or mCHPC) systems used in distributed power generation. These systems are often combined in concentrated solar CSP and CPV smart microgrid configurations for off-grid rural, island or isolated microgrid, minigrid and distributed power renewable energy systems. Solar tracking algorithms are also used in modelling of trigeneration systems using Matlab and Simulink platform as well as in automation and control of renewable energy systems through intelligent parsing, multi-objective, adaptive learning control and control optimization strategies. Solar tracking algorithms also find application in developing solar models for country or location specific solar studies, for example in terms of measuring or analysis of the fluctuations of the solar radiation (i.e. direct and diffuse radiation) in a particular area. Solar DNI, solar irradiance and atmospheric information and models can thus be integrated into a solar map, solar atlas or geographical information systems (GIS). Such models allows for defining local parameters for specific regions that may be valuable in terms of the evaluation of different solar in photovoltaic of CSP systems on simulation and synthesis platforms such as Matlab and Simulink or in linear or multi-objective optimization algorithm platforms such as COMPOSE, EnergyPLAN or DER-CAM. A dual-axis solar tracker and single-axis solar tracker may use a sun tracker program or sun tracker algorithm to position a solar dish, solar panel array, heliostat array, PV panel, solar antenna or infrared solar nantenna. A self-tracking solar concentrator performs automatic solar tracking by computing the solar vector. Solar position algorithms (TwinCAT, SPA, or PSA Algorithms) use an astronomical algorithm to calculate the position of the sun. It uses astronomical software algorithms and equations for solar tracking in the calculation of sun's position in the sky for each location on the earth at any time of day. Like an optical solar telescope, the solar position algorithm pin-points the solar reflector at the sun and locks onto the sun's position to track the sun across the sky as the sun progresses throughout the day. Optical sensors such as photodiodes, light-dependant-resistors (LDR) or photoresistors are used as optical accuracy feedback devices. Lately we also included a section in the book (with links to microprocessor code) on how the PixArt Wii infrared camera in the Wii remote or Wiimote may be used in infrared solar tracking applications. In order to harvest free energy from the sun, some automatic solar positioning systems use an optical means to direct the solar tracking device. These solar tracking strategies use optical tracking techniques, such as a sun sensor means, to direct sun rays onto a silicon or CMOS substrate to determine the X and Y coordinates of the sun's position. In a solar mems sun-sensor device, incident sunlight enters the sun sensor through a small pin-hole in a mask plate where light is exposed to a silicon substrate. In a web-camera or camera image processing sun tracking and sun following means, object tracking software performs multi object tracking or moving object tracking methods. In an solar object tracking technique, image processing software performs mathematical processing to box the outline of the apparent solar disc or sun blob within the captured image frame, while sun-localization is performed with an edge detection algorithm to determine the solar vector coordinates. An automated positioning system help maximize the yields of solar power plants through solar tracking control to harness sun's energy. In such renewable energy systems, the solar panel positioning system uses a sun tracking techniques and a solar angle calculator in positioning PV panels in photovoltaic systems and concentrated photovoltaic CPV systems. Automatic on-axis solar tracking in a PV solar tracking system can be dual-axis sun tracking or single-axis sun solar tracking. It is known that a motorized positioning system in a photovoltaic panel tracker increase energy yield and ensures increased power output, even in a single axis solar tracking configuration. Other applications such as robotic solar tracker or robotic solar tracking system uses robotica with artificial intelligence in the control optimization of energy yield in solar harvesting through a robotic tracking system. Automatic positioning systems in solar tracking designs are also used in other free energy generators, such as concentrated solar thermal power CSP and dish Stirling systems. The sun tracking device in a solar collector in a solar concentrator or solar collector Such a performs on-axis solar tracking, a dual axis solar tracker assists to harness energy from the sun through an optical solar collector, which can be a parabolic mirror, parabolic reflector, Fresnel lens or mirror array/matrix. A parabolic dish or reflector is dynamically steered using a transmission system or solar tracking slew drive mean. In steering the dish to face the sun, the power dish actuator and actuation means in a parabolic dish system optically focusses the sun's energy on the focal point of a parabolic dish or solar concentrating means. A Stirling engine, solar heat pipe, thermosyphin, solar phase change material PCM receiver, or a fibre optic sunlight receiver means is located at the focal point of the solar concentrator. The dish Stirling engine configuration is referred to as a dish Stirling system or Stirling power generation system. Hybrid solar power systems (used in combination with biogas, biofuel, petrol, ethanol, diesel, natural gas or PNG) use a combination of power sources to harness and store solar energy in a storage medium. Any multitude of energy sources can be combined through the use of controllers and the energy stored in batteries, phase change material, thermal heat storage, and in cogeneration form converted to the required power using thermodynamic cycles (organic Rankin, Brayton cycle, micro turbine, Stirling) with an inverter and charge controller. 这本书详细介绍了全自动太阳能跟踪,太阳跟踪系统的出现,太阳能跟踪器和太阳跟踪系统。智能全自动太阳能跟踪器是定向向着太阳的有效载荷设备。这种可编程计算机的太阳能跟踪装置,包括太阳跟踪,太阳能跟踪系统,以及微控制器,微处理器和/或基于PC机的太阳跟踪控制,以定向太阳能反射器,太阳透镜,光电板或其他光学配置朝向太阳的原理。机动空间框架和运动系统,确保运动动力学和采用的驱动技术和传动原理引导光学配置,如曼金,抛物线,圆锥曲线,或卡塞格林式太阳能集热器面向太阳,不断跟随太阳运动的轮廓。 从阳光透过太阳能跟踪器或实用的太阳能跟踪系统利用电力,可再生能源控制的自动化系统需要自动太阳跟踪软件和太阳位置算法来实现控制与自动化架构,电路板和硬件的动态运动控制。上轴太阳跟踪系统,如高度,方位角双轴或多轴太阳跟踪系统使用太阳跟踪算法或光线追踪传感器或软件,以确保通过天空中太阳的通道被跟踪的高精度的自动太阳跟踪器的应用,通过正确的夏至,春分太阳和冬至。一种高精度太阳位置计算器或太阳位置算法是这样的自动太阳能跟踪系统的设计和施工中的重要一步。 В этой книге подробно Автоматическая Solar-Tracking, ВС-Tracking-Systems, Solar-трекеры и ВС Tracker Systems. Интеллектуальный автоматический солнечной слежения является устройством, которое ориентирует полезную нагрузку к солнцу. Такое программируемый компьютер на основе солнечной устройство слежения включает принципы солнечной слежения, солнечных систем слежения, а также микроконтроллер, микропроцессор и / или ПК на базе управления солнечной отслеживания ориентироваться солнечных отражателей, солнечные линзы, фотоэлектрические панели или другие оптические конфигурации к ВС Моторизованные космические кадры и кинематические системы обеспечения динамики движения и использовать приводной техники и готовится принципы, чтобы направить оптические конфигурации, такие как Манжен, параболических, конических или Кассегрена солнечных коллекторов энергии, чтобы лицом к солнцу и следовать за солнцем контур движения непрерывно. В обуздывать силу от солнца через солнечный трекер или практической солнечной системы слежения, системы возобновляемых контроля энергии автоматизации требуют автоматического солнечной отслеживания программного обеспечения и алгоритмов солнечные позиции для достижения динамического контроля движения с архитектуры автоматизации управления, печатных плат и аппаратных средств. На оси системы слежения ВС, таких как высота-азимут двойной оси или многоосевые солнечные системы трекер использовать алгоритм отслеживания солнце или трассировки лучей датчиков или программное обеспечение, чтобы обеспечить прохождение солнца по небу прослеживается с высокой точностью в автоматизированных приложений Солнечная Tracker , прямо через летнего солнцестояния, солнечного равноденствия и зимнего солнцестояния.Высокая точность позиции ВС калькулятор или положение солнца алгоритм это важный шаг в проектировании и строительстве автоматической системой солнечной слежения.
Book Synopsis Practical Solar Tracking Automatic Solar Tracking Sun Tracking Автоматическое удержание Солнечная слежения ВС 太陽能自動跟踪太陽跟踪 by : Gerro Prinsloo
Download or read book Practical Solar Tracking Automatic Solar Tracking Sun Tracking Автоматическое удержание Солнечная слежения ВС 太陽能自動跟踪太陽跟踪 written by Gerro Prinsloo and published by Gerro Prinsloo. This book was released on 2015-11-01 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details Practical Solar Energy Harvesting, Automatic Solar-Tracking, Sun-Tracking-Systems, Solar-Trackers and Sun Tracker Systems using motorized automatic positioning concepts and control principles. An intelligent automatic solar tracker is a device that orients a payload toward the sun. Such programmable computer based solar tracking device includes principles of solar tracking, solar tracking systems, as well as microcontroller, microprocessor and/or PC based solar tracking control to orientate solar reflectors, solar lenses, photovoltaic panels or other optical configurations towards the sun. Motorized space frames and kinematic systems ensure motion dynamics and employ drive technology and gearing principles to steer optical configurations such as mangin, parabolic, conic, or cassegrain solar energy collectors to face the sun and follow the sun movement contour continuously. In general, the book may benefit solar research and solar energy applications in countries such as Africa, Mediterranean, Italy, Spain, Greece, USA, Mexico, South America, Brazilia, Argentina, Chili, India, Malaysia, Middle East, UAE, Russia, Japan and China. This book on practical automatic Solar-Tracking Sun-Tracking is in .PDF format and can easily be converted to the .EPUB .MOBI .AZW .ePub .FB2 .LIT .LRF .MOBI .PDB .PDF .TCR formats for smartphones and Kindle by using the ebook.online-convert.com facility. The content of the book is also applicable to communication antenna satellite tracking and moon tracking algorithm source code for which links to free download links are provided. In harnessing power from the sun through a solar tracker or practical solar tracking system, renewable energy control automation systems require automatic solar tracking software and solar position algorithms to accomplish dynamic motion control with control automation architecture, circuit boards and hardware. On-axis sun tracking system such as the altitude-azimuth dual axis or multi-axis solar tracker systems use a sun tracking algorithm or ray tracing sensors or software to ensure the sun's passage through the sky is traced with high precision in automated solar tracker applications, right through summer solstice, solar equinox and winter solstice. A high precision sun position calculator or sun position algorithm is this an important step in the design and construction of an automatic solar tracking system. From sun tracing software perspective, the sonnet Tracing The Sun has a literal meaning. Within the context of sun track and trace, this book explains that the sun's daily path across the sky is directed by relatively simple principles, and if grasped/understood, then it is relatively easy to trace the sun with sun following software. Sun position computer software for tracing the sun are available as open source code, sources that is listed in this book. Ironically there was even a system called sun chaser, said to have been a solar positioner system known for chasing the sun throughout the day. Using solar equations in an electronic circuit for automatic solar tracking is quite simple, even if you are a novice, but mathematical solar equations are over complicated by academic experts and professors in text-books, journal articles and internet websites. In terms of solar hobbies, scholars, students and Hobbyist's looking at solar tracking electronics or PC programs for solar tracking are usually overcome by the sheer volume of scientific material and internet resources, which leaves many developers in frustration when search for simple experimental solar tracking source-code for their on-axis sun-tracking systems. This booklet will simplify the search for the mystical sun tracking formulas for your sun tracker innovation and help you develop your own autonomous solar tracking controller. By directing the solar collector directly into the sun, a solar harvesting means or device can harness sunlight or thermal heat. This is achieved with the help of sun angle formulas, solar angle formulas or solar tracking procedures for the calculation of sun's position in the sky. Automatic sun tracking system software includes algorithms for solar altitude azimuth angle calculations required in following the sun across the sky. In using the longitude, latitude GPS coordinates of the solar tracker location, these sun tracking software tools supports precision solar tracking by determining the solar altitude-azimuth coordinates for the sun trajectory in altitude-azimuth tracking at the tracker location, using certain sun angle formulas in sun vector calculations. Instead of follow the sun software, a sun tracking sensor such as a sun sensor or webcam or video camera with vision based sun following image processing software can also be used to determine the position of the sun optically. Such optical feedback devices are often used in solar panel tracking systems and dish tracking systems. Dynamic sun tracing is also used in solar surveying, DNI analyser and sun surveying systems that build solar infographics maps with solar radiance, irradiance and DNI models for GIS (geographical information system). In this way geospatial methods on solar/environment interaction makes use use of geospatial technologies (GIS, Remote Sensing, and Cartography). Climatic data and weather station or weather center data, as well as queries from sky servers and solar resource database systems (i.e. on DB2, Sybase, Oracle, SQL, MySQL) may also be associated with solar GIS maps. In such solar resource modelling systems, a pyranometer or solarimeter is normally used in addition to measure direct and indirect, scattered, dispersed, reflective radiation for a particular geographical location. Sunlight analysis is important in flash photography where photographic lighting are important for photographers. GIS systems are used by architects who add sun shadow applets to study architectural shading or sun shadow analysis, solar flux calculations, optical modelling or to perform weather modelling. Such systems often employ a computer operated telescope type mechanism with ray tracing program software as a solar navigator or sun tracer that determines the solar position and intensity. The purpose of this booklet is to assist developers to track and trace suitable source-code and solar tracking algorithms for their application, whether a hobbyist, scientist, technician or engineer. Many open-source sun following and tracking algorithms and source-code for solar tracking programs and modules are freely available to download on the internet today. Certain proprietary solar tracker kits and solar tracking controllers include a software development kit SDK for its application programming interface API attributes (Pebble). Widget libraries, widget toolkits, GUI toolkit and UX libraries with graphical control elements are also available to construct the graphical user interface (GUI) for your solar tracking or solar power monitoring program. The solar library used by solar position calculators, solar simulation software and solar contour calculators include machine program code for the solar hardware controller which are software programmed into Micro-controllers, Programmable Logic Controllers PLC, programmable gate arrays, Arduino processor or PIC processor. PC based solar tracking is also high in demand using C++, Visual Basic VB, as well as MS Windows, Linux and Apple Mac based operating systems for sun path tables on Matlab, Excel. Some books and internet webpages use other terms, such as: sun angle calculator, sun position calculator or solar angle calculator. As said, such software code calculate the solar azimuth angle, solar altitude angle, solar elevation angle or the solar Zenith angle (Zenith solar angle is simply referenced from vertical plane, the mirror of the elevation angle measured from the horizontal or ground plane level). Similar software code is also used in solar calculator apps or the solar power calculator apps for IOS and Android smartphone devices. Most of these smartphone solar mobile apps show the sun path and sun-angles for any location and date over a 24 hour period. Some smartphones include augmented reality features in which you can physically see and look at the solar path through your cell phone camera or mobile phone camera at your phone's specific GPS location. In the computer programming and digital signal processing (DSP) environment, (free/open source) program code are available for VB, .Net, Delphi, Python, C, C+, C++, PHP, Swift, ADM, F, Flash, Basic, QBasic, GBasic, KBasic, SIMPL language, Squirrel, Solaris, Assembly language on operating systems such as MS Windows, Apple Mac, DOS or Linux OS. Software algorithms predicting position of the sun in the sky are commonly available as graphical programming platforms such as Matlab (Mathworks), Simulink models, Java applets, TRNSYS simulations, Scada system apps, Labview module, Beckhoff TwinCAT (Visual Studio), Siemens SPA, mobile and iphone apps, Android or iOS tablet apps, and so forth. At the same time, PLC software code for a range of sun tracking automation technology can follow the profile of sun in sky for Siemens, HP, Panasonic, ABB, Allan Bradley, OMRON, SEW, Festo, Beckhoff, Rockwell, Schneider, Endress Hauser, Fudji electric. Honeywell, Fuchs, Yokonawa, or Muthibishi platforms. Sun path projection software are also available for a range of modular IPC embedded PC motherboards, Industrial PC, PLC (Programmable Logic Controller) and PAC (Programmable Automation Controller) such as the Siemens S7-1200 or Siemens Logo, Beckhoff IPC or CX series, OMRON PLC, Ercam PLC, AC500plc ABB, National Instruments NI PXI or NI cRIO, PIC processor, Intel 8051/8085, IBM (Cell, Power, Brain or Truenorth series), FPGA (Xilinx Altera Nios), Intel, Xeon, Atmel megaAVR, MPU, Maple, Teensy, MSP, XMOS, Xbee, ARM, Raspberry Pi, Eagle, Arduino or Arduino AtMega microcontroller, with servo motor, stepper motor, direct current DC pulse width modulation PWM (current driver) or alternating current AC SPS or IPC variable frequency drives VFD motor drives (also termed adjustable-frequency drive, variable-speed drive, AC drive, micro drive or inverter drive) for electrical, mechatronic, pneumatic, or hydraulic solar tracking actuators. The above motion control and robot control systems include analogue or digital interfacing ports on the processors to allow for tracker angle orientation feedback control through one or a combination of angle sensor or angle encoder, shaft encoder, precision encoder, optical encoder, magnetic encoder, direction encoder, rotational encoder, chip encoder, tilt sensor, inclination sensor, or pitch sensor. Note that the tracker's elevation or zenith axis angle may measured using an altitude angle-, declination angle-, inclination angle-, pitch angle-, or vertical angle-, zenith angle- sensor or inclinometer. Similarly the tracker's azimuth axis angle be measured with a azimuth angle-, horizontal angle-, or roll angle- sensor. Chip integrated accelerometer magnetometer gyroscope type angle sensors can also be used to calculate displacement. Other options include the use of thermal imaging systems such as a Fluke thermal imager, or robotic or vision based solar tracker systems that employ face tracking, head tracking, hand tracking, eye tracking and car tracking principles in solar tracking. With unattended decentralised rural, island, isolated, or autonomous off-grid power installations, remote control, monitoring, data acquisition, digital datalogging and online measurement and verification equipment becomes crucial. It assists the operator with supervisory control to monitor the efficiency of remote renewable energy resources and systems and provide valuable web-based feedback in terms of CO2 and clean development mechanism (CDM) reporting. A power quality analyser for diagnostics through internet, WiFi and cellular mobile links is most valuable in frontline troubleshooting and predictive maintenance, where quick diagnostic analysis is required to detect and prevent power quality issues. Solar tracker applications cover a wide spectrum of solar applications and solar assisted application, including concentrated solar power generation, solar desalination, solar water purification, solar steam generation, solar electricity generation, solar industrial process heat, solar thermal heat storage, solar food dryers, solar water pumping, hydrogen production from methane or producing hydrogen and oxygen from water (HHO) through electrolysis. Many patented or non-patented solar apparatus include tracking in solar apparatus for solar electric generator, solar desalinator, solar steam engine, solar ice maker, solar water purifier, solar cooling, solar refrigeration, USB solar charger, solar phone charging, portable solar charging tracker, solar coffee brewing, solar cooking or solar dying means. Your project may be the next breakthrough or patent, but your invention is held back by frustration in search for the sun tracker you require for your solar powered appliance, solar generator, solar tracker robot, solar freezer, solar cooker, solar drier, solar pump, solar freezer, or solar dryer project. Whether your solar electronic circuit diagram include a simplified solar controller design in a solar electricity project, solar power kit, solar hobby kit, solar steam generator, solar hot water system, solar ice maker, solar desalinator, hobbyist solar panels, hobby robot, or if you are developing professional or hobby electronics for a solar utility or micro scale solar powerplant for your own solar farm or solar farming, this publication may help accelerate the development of your solar tracking innovation. Lately, solar polygeneration, solar trigeneration (solar triple generation), and solar quad generation (adding delivery of steam, liquid/gaseous fuel, or capture food-grade CO$_2$) systems have need for automatic solar tracking. These systems are known for significant efficiency increases in energy yield as a result of the integration and re-use of waste or residual heat and are suitable for compact packaged micro solar powerplants that could be manufactured and transported in kit-form and operate on a plug-and play basis. Typical hybrid solar power systems include compact or packaged solar micro combined heat and power (CHP or mCHP) or solar micro combined, cooling, heating and power (CCHP, CHPC, mCCHP, or mCHPC) systems used in distributed power generation. These systems are often combined in concentrated solar CSP and CPV smart microgrid configurations for off-grid rural, island or isolated microgrid, minigrid and distributed power renewable energy systems. Solar tracking algorithms are also used in modelling of trigeneration systems using Matlab Simulink (Modelica or TRNSYS) platform as well as in automation and control of renewable energy systems through intelligent parsing, multi-objective, adaptive learning control and control optimization strategies. Solar tracking algorithms also find application in developing solar models for country or location specific solar studies, for example in terms of measuring or analysis of the fluctuations of the solar radiation (i.e. direct and diffuse radiation) in a particular area. Solar DNI, solar irradiance and atmospheric information and models can thus be integrated into a solar map, solar atlas or geographical information systems (GIS). Such models allows for defining local parameters for specific regions that may be valuable in terms of the evaluation of different solar in photovoltaic of CSP systems on simulation and synthesis platforms such as Matlab and Simulink or in linear or multi-objective optimization algorithm platforms such as COMPOSE, EnergyPLAN or DER-CAM. A dual-axis solar tracker and single-axis solar tracker may use a sun tracker program or sun tracker algorithm to position a solar dish, solar panel array, heliostat array, PV panel, solar antenna or infrared solar nantenna. A self-tracking solar concentrator performs automatic solar tracking by computing the solar vector. Solar position algorithms (TwinCAT, SPA, or PSA Algorithms) use an astronomical algorithm to calculate the position of the sun. It uses astronomical software algorithms and equations for solar tracking in the calculation of sun's position in the sky for each location on the earth at any time of day. Like an optical solar telescope, the solar position algorithm pin-points the solar reflector at the sun and locks onto the sun's position to track the sun across the sky as the sun progresses throughout the day. Optical sensors such as photodiodes, light-dependant-resistors (LDR) or photoresistors are used as optical accuracy feedback devices. Lately we also included a section in the book (with links to microprocessor code) on how the PixArt Wii infrared camera in the Wii remote or Wiimote may be used in infrared solar tracking applications. In order to harvest free energy from the sun, some automatic solar positioning systems use an optical means to direct the solar tracking device. These solar tracking strategies use optical tracking techniques, such as a sun sensor means, to direct sun rays onto a silicon or CMOS substrate to determine the X and Y coordinates of the sun's position. In a solar mems sun-sensor device, incident sunlight enters the sun sensor through a small pin-hole in a mask plate where light is exposed to a silicon substrate. In a web-camera or camera image processing sun tracking and sun following means, object tracking software performs multi object tracking or moving object tracking methods. In an solar object tracking technique, image processing software performs mathematical processing to box the outline of the apparent solar disc or sun blob within the captured image frame, while sun-localization is performed with an edge detection algorithm to determine the solar vector coordinates. An automated positioning system help maximize the yields of solar power plants through solar tracking control to harness sun's energy. In such renewable energy systems, the solar panel positioning system uses a sun tracking techniques and a solar angle calculator in positioning PV panels in photovoltaic systems and concentrated photovoltaic CPV systems. Automatic on-axis solar tracking in a PV solar tracking system can be dual-axis sun tracking or single-axis sun solar tracking. It is known that a motorized positioning system in a photovoltaic panel tracker increase energy yield and ensures increased power output, even in a single axis solar tracking configuration. Other applications such as robotic solar tracker or robotic solar tracking system uses robotica with artificial intelligence in the control optimization of energy yield in solar harvesting through a robotic tracking system. Automatic positioning systems in solar tracking designs are also used in other free energy generators, such as concentrated solar thermal power CSP and dish Stirling systems. The sun tracking device in a solar collector in a solar concentrator or solar collector Such a performs on-axis solar tracking, a dual axis solar tracker assists to harness energy from the sun through an optical solar collector, which can be a parabolic mirror, parabolic reflector, Fresnel lens or mirror array/matrix. A parabolic dish or reflector is dynamically steered using a transmission system or solar tracking slew drive mean. In steering the dish to face the sun, the power dish actuator and actuation means in a parabolic dish system optically focusses the sun's energy on the focal point of a parabolic dish or solar concentrating means. A Stirling engine, solar heat pipe, thermosyphin, solar phase change material PCM receiver, or a fibre optic sunlight receiver means is located at the focal point of the solar concentrator. The dish Stirling engine configuration is referred to as a dish Stirling system or Stirling power generation system. Hybrid solar power systems (used in combination with biogas, biofuel, petrol, ethanol, diesel, natural gas or PNG) use a combination of power sources to harness and store solar energy in a storage medium. Any multitude of energy sources can be combined through the use of controllers and the energy stored in batteries, phase change material, thermal heat storage, and in cogeneration form converted to the required power using thermodynamic cycles (organic Rankin, Brayton cycle, micro turbine, Stirling) with an inverter and charge controller. В этой книге подробно Автоматическая Solar-Tracking, ВС-Tracking-Systems, Solar-трекеры и ВС Tracker Systems. Интеллектуальный автоматический солнечной слежения является устройством, которое ориентирует полезную нагрузку к солнцу. Такое программируемый компьютер на основе солнечной устройство слежения включает принципы солнечной слежения, солнечных систем слежения, а также микроконтроллер, микропроцессор и / или ПК на базе управления солнечной отслеживания ориентироваться солнечных отражателей, солнечные линзы, фотоэлектрические панели или другие оптические конфигурации к ВС Моторизованные космические кадры и кинематические системы обеспечения динамики движения и использовать приводной техники и готовится принципы, чтобы направить оптические конфигурации, такие как Манжен, параболических, конических или Кассегрена солнечных коллекторов энергии, чтобы лицом к солнцу и следовать за солнцем контур движения непрерывно. В обуздывать силу от солнца через солнечный трекер или практической солнечной системы слежения, системы возобновляемых контроля энергии автоматизации требуют автоматического солнечной отслеживания программного обеспечения и алгоритмов солнечные позиции для достижения динамического контроля движения с архитектуры автоматизации управления, печатных плат и аппаратных средств. На оси системы слежения ВС, таких как высота-азимут двойной оси или многоосевые солнечные системы трекер использовать алгоритм отслеживания солнце или трассировки лучей датчиков или программное обеспечение, чтобы обеспечить прохождение солнца по небу прослеживается с высокой точностью в автоматизированных приложений Солнечная Tracker , прямо через летнего солнцестояния, солнечного равноденствия и зимнего солнцестояния.Высокая точность позиции ВС калькулятор или положение солнца алгоритм это важный шаг в проектировании и строительстве автоматической системой солнечной слежения. 這本書詳細介紹了全自動太陽能跟踪,太陽跟踪系統的出現,太陽能跟踪器和太陽跟踪系統。智能全自動太陽能跟踪器是定向向著太陽的有效載荷設備。這種可編程計算機的太陽能跟踪裝置,包括太陽跟踪,太陽能跟踪系統,以及微控制器,微處理器和/或基於PC機的太陽跟踪控制,以定向太陽能反射器,太陽透鏡,光電板或其他光學配置朝向太陽的原理。機動空間框架和運動系統,確保運動動力學和採用的驅動技術和傳動原理引導光學配置,如曼金,拋物線,圓錐曲線,或卡塞格林式太陽能集熱器面向太陽,不斷跟隨太陽運動的輪廓。 從陽光透過太陽能跟踪器或實用的太陽能跟踪系統利用電力,可再生能源控制的自動化系統需要自動太陽跟踪軟件和太陽位置算法來實現控制與自動化架構,電路板和硬件的動態運動控制。上軸太陽跟踪系統,如高度,方位角雙軸或多軸太陽跟踪系統使用太陽跟踪算法或光線追踪傳感器或軟件,以確保通過天空中太陽的通道被跟踪的高精度的自動太陽跟踪器的應用,通過正確的夏至,春分太陽和冬至。一種高精度太陽位置計算器或太陽位置算法是這樣的自動太陽能跟踪系統的設計和施工中的重要一步。
Book Synopsis Automatic Solar Tracking Sun Tracking Satellite Tracking rastreador solar seguimento solar seguidor solar automático de seguimiento solar by : Gerro Prinsloo
Download or read book Automatic Solar Tracking Sun Tracking Satellite Tracking rastreador solar seguimento solar seguidor solar automático de seguimiento solar written by Gerro Prinsloo and published by Gerro Prinsloo. This book was released on 2015-11-01 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic Solar Tracking Sun Tracking : This book details Automatic Solar-Tracking, Sun-Tracking-Systems, Solar-Trackers and Sun Tracker Systems. An intelligent automatic solar tracker is a device that orients a payload toward the sun. Such programmable computer based solar tracking device includes principles of solar tracking, solar tracking systems, as well as microcontroller, microprocessor and/or PC based solar tracking control to orientate solar reflectors, solar lenses, photovoltaic panels or other optical configurations towards the sun. Motorized space frames and kinematic systems ensure motion dynamics and employ drive technology and gearing principles to steer optical configurations such as mangin, parabolic, conic, or cassegrain solar energy collectors to face the sun and follow the sun movement contour continuously (seguimiento solar y automatización, automatización seguidor solar, tracking solar e automação, automação seguidor solar, inseguimento solare, inseguitore solare, energia termica, sole seguito, posizionatore motorizzato) In harnessing power from the sun through a solar tracker or practical solar tracking system, renewable energy control automation systems require automatic solar tracking software and solar position algorithms to accomplish dynamic motion control with control automation architecture, circuit boards and hardware. On-axis sun tracking system such as the altitude-azimuth dual axis or multi-axis solar tracker systems use a sun tracking algorithm or ray tracing sensors or software to ensure the sun's passage through the sky is traced with high precision in automated solar tracker applications, right through summer solstice, solar equinox and winter solstice. A high precision sun position calculator or sun position algorithm is this an important step in the design and construction of an automatic solar tracking system. The content of the book is also applicable to communication antenna satellite tracking and moon tracking algorithm source code for which links to free download links are provided. From sun tracing software perspective, the sonnet Tracing The Sun has a literal meaning. Within the context of sun track and trace, this book explains that the sun's daily path across the sky is directed by relatively simple principles, and if grasped/understood, then it is relatively easy to trace the sun with sun following software. Sun position computer software for tracing the sun are available as open source code, sources that is listed in this book. The book also describes the use of satellite tracking software and mechanisms in solar tracking applications. Ironically there was even a system called sun chaser, said to have been a solar positioner system known for chasing the sun throughout the day. Using solar equations in an electronic circuit for automatic solar tracking is quite simple, even if you are a novice, but mathematical solar equations are over complicated by academic experts and professors in text-books, journal articles and internet websites. In terms of solar hobbies, scholars, students and Hobbyist's looking at solar tracking electronics or PC programs for solar tracking are usually overcome by the sheer volume of scientific material and internet resources, which leaves many developers in frustration when search for simple experimental solar tracking source-code for their on-axis sun-tracking systems. This booklet will simplify the search for the mystical sun tracking formulas for your sun tracker innovation and help you develop your own autonomous solar tracking controller. By directing the solar collector directly into the sun, a solar harvesting means or device can harness sunlight or thermal heat. This is achieved with the help of sun angle formulas, solar angle formulas or solar tracking procedures for the calculation of sun's position in the sky. Automatic sun tracking system software includes algorithms for solar altitude azimuth angle calculations required in following the sun across the sky. In using the longitude, latitude GPS coordinates of the solar tracker location, these sun tracking software tools supports precision solar tracking by determining the solar altitude-azimuth coordinates for the sun trajectory in altitude-azimuth tracking at the tracker location, using certain sun angle formulas in sun vector calculations. Instead of follow the sun software, a sun tracking sensor such as a sun sensor or webcam or video camera with vision based sun following image processing software can also be used to determine the position of the sun optically. Such optical feedback devices are often used in solar panel tracking systems and dish tracking systems. Dynamic sun tracing is also used in solar surveying, DNI analyser and sun surveying systems that build solar infographics maps with solar radiance, irradiance and DNI models for GIS (geographical information system). In this way geospatial methods on solar/environment interaction makes use use of geospatial technologies (GIS, Remote Sensing, and Cartography). Climatic data and weather station or weather center data, as well as queries from sky servers and solar resource database systems (i.e. on DB2, Sybase, Oracle, SQL, MySQL) may also be associated with solar GIS maps. In such solar resource modelling systems, a pyranometer or solarimeter is normally used in addition to measure direct and indirect, scattered, dispersed, reflective radiation for a particular geographical location. Sunlight analysis is important in flash photography where photographic lighting are important for photographers. GIS systems are used by architects who add sun shadow applets to study architectural shading or sun shadow analysis, solar flux calculations, optical modelling or to perform weather modelling. Such systems often employ a computer operated telescope type mechanism with ray tracing program software as a solar navigator or sun tracer that determines the solar position and intensity. The purpose of this booklet is to assist developers to track and trace suitable source-code and solar tracking algorithms for their application, whether a hobbyist, scientist, technician or engineer. Many open-source sun following and tracking algorithms and source-code for solar tracking programs and modules are freely available to download on the internet today. Certain proprietary solar tracker kits and solar tracking controllers include a software development kit SDK for its application programming interface API attributes (Pebble). Widget libraries, widget toolkits, GUI toolkit and UX libraries with graphical control elements are also available to construct the graphical user interface (GUI) for your solar tracking or solar power monitoring program. The solar library used by solar position calculators, solar simulation software and solar contour calculators include machine program code for the solar hardware controller which are software programmed into Micro-controllers, Programmable Logic Controllers PLC, programmable gate arrays, Arduino processor or PIC processor. PC based solar tracking is also high in demand using C++, Visual Basic VB, as well as MS Windows, Linux and Apple Mac based operating systems for sun path tables on Matlab, Excel. Some books and internet webpages use other terms, such as: sun angle calculator, sun position calculator or solar angle calculator. As said, such software code calculate the solar azimuth angle, solar altitude angle, solar elevation angle or the solar Zenith angle (Zenith solar angle is simply referenced from vertical plane, the mirror of the elevation angle measured from the horizontal or ground plane level). Similar software code is also used in solar calculator apps or the solar power calculator apps for IOS and Android smartphone devices. Most of these smartphone solar mobile apps show the sun path and sun-angles for any location and date over a 24 hour period. Some smartphones include augmented reality features in which you can physically see and look at the solar path through your cell phone camera or mobile phone camera at your phone's specific GPS location. In the computer programming and digital signal processing (DSP) environment, (free/open source) program code are available for VB, .Net, Delphi, Python, C, C+, C++, PHP, Swift, ADM, F, Flash, Basic, QBasic, GBasic, KBasic, SIMPL language, Squirrel, Solaris, Assembly language on operating systems such as MS Windows, Apple Mac, DOS or Linux OS. Software algorithms predicting position of the sun in the sky are commonly available as graphical programming platforms such as Matlab (Mathworks), Simulink models, Java applets, TRNSYS simulations, Scada system apps, Labview module, Beckhoff TwinCAT (Visual Studio), Siemens SPA, mobile and iphone apps, Android or iOS tablet apps, and so forth. At the same time, PLC software code for a range of sun tracking automation technology can follow the profile of sun in sky for Siemens, HP, Panasonic, ABB, Allan Bradley, OMRON, SEW, Festo, Beckhoff, Rockwell, Schneider, Endress Hauser, Fudji electric. Honeywell, Fuchs, Yokonawa, or Muthibishi platforms. Sun path projection software are also available for a range of modular IPC embedded PC motherboards, Industrial PC, PLC (Programmable Logic Controller) and PAC (Programmable Automation Controller) such as the Siemens S7-1200 or Siemens Logo, Beckhoff IPC or CX series, OMRON PLC, Ercam PLC, AC500plc ABB, National Instruments NI PXI or NI cRIO, PIC processor, Intel 8051/8085, IBM (Cell, Power, Brain or Truenorth series), FPGA (Xilinx Altera Nios), Intel, Xeon, Atmel megaAVR, MPU, Maple, Teensy, MSP, XMOS, Xbee, ARM, Raspberry Pi, Eagle, Arduino or Arduino AtMega microcontroller, with servo motor, stepper motor, direct current DC pulse width modulation PWM (current driver) or alternating current AC SPS or IPC variable frequency drives VFD motor drives (also termed adjustable-frequency drive, variable-speed drive, AC drive, micro drive or inverter drive) for electrical, mechatronic, pneumatic, or hydraulic solar tracking actuators. The above motion control and robot control systems include analogue or digital interfacing ports on the processors to allow for tracker angle orientation feedback control through one or a combination of angle sensor or angle encoder, shaft encoder, precision encoder, optical encoder, magnetic encoder, direction encoder, rotational encoder, chip encoder, tilt sensor, inclination sensor, or pitch sensor. Note that the tracker's elevation or zenith axis angle may measured using an altitude angle-, declination angle-, inclination angle-, pitch angle-, or vertical angle-, zenith angle- sensor or inclinometer. Similarly the tracker's azimuth axis angle be measured with a azimuth angle-, horizontal angle-, or roll angle- sensor. Chip integrated accelerometer magnetometer gyroscope type angle sensors can also be used to calculate displacement. Other options include the use of thermal imaging systems such as a Fluke thermal imager, or robotic or vision based solar tracker systems that employ face tracking, head tracking, hand tracking, eye tracking and car tracking principles in solar tracking. With unattended decentralised rural, island, isolated, or autonomous off-grid power installations, remote control, monitoring, data acquisition, digital datalogging and online measurement and verification equipment becomes crucial. It assists the operator with supervisory control to monitor the efficiency of remote renewable energy resources and systems and provide valuable web-based feedback in terms of CO2 and clean development mechanism (CDM) reporting. A power quality analyser for diagnostics through internet, WiFi and cellular mobile links is most valuable in frontline troubleshooting and predictive maintenance, where quick diagnostic analysis is required to detect and prevent power quality issues. Solar tracker applications cover a wide spectrum of solar applications and solar assisted application, including concentrated solar power generation, solar desalination, solar water purification, solar steam generation, solar electricity generation, solar industrial process heat, solar thermal heat storage, solar food dryers, solar water pumping, hydrogen production from methane or producing hydrogen and oxygen from water (HHO) through electrolysis. Many patented or non-patented solar apparatus include tracking in solar apparatus for solar electric generator, solar desalinator, solar steam engine, solar ice maker, solar water purifier, solar cooling, solar refrigeration, USB solar charger, solar phone charging, portable solar charging tracker, solar coffee brewing, solar cooking or solar dying means. Your project may be the next breakthrough or patent, but your invention is held back by frustration in search for the sun tracker you require for your solar powered appliance, solar generator, solar tracker robot, solar freezer, solar cooker, solar drier, solar pump, solar freezer, or solar dryer project. Whether your solar electronic circuit diagram include a simplified solar controller design in a solar electricity project, solar power kit, solar hobby kit, solar steam generator, solar hot water system, solar ice maker, solar desalinator, hobbyist solar panels, hobby robot, or if you are developing professional or hobby electronics for a solar utility or micro scale solar powerplant for your own solar farm or solar farming, this publication may help accelerate the development of your solar tracking innovation. Lately, solar polygeneration, solar trigeneration (solar triple generation), and solar quad generation (adding delivery of steam, liquid/gaseous fuel, or capture food-grade CO$_2$) systems have need for automatic solar tracking. These systems are known for significant efficiency increases in energy yield as a result of the integration and re-use of waste or residual heat and are suitable for compact packaged micro solar powerplants that could be manufactured and transported in kit-form and operate on a plug-and play basis. Typical hybrid solar power systems include compact or packaged solar micro combined heat and power (CHP or mCHP) or solar micro combined, cooling, heating and power (CCHP, CHPC, mCCHP, or mCHPC) systems used in distributed power generation. These systems are often combined in concentrated solar CSP and CPV smart microgrid configurations for off-grid rural, island or isolated microgrid, minigrid and distributed power renewable energy systems. Solar tracking algorithms are also used in modelling of trigeneration systems using Matlab Simulink (Modelica or TRNSYS) platform as well as in automation and control of renewable energy systems through intelligent parsing, multi-objective, adaptive learning control and control optimization strategies. Solar tracking algorithms also find application in developing solar models for country or location specific solar studies, for example in terms of measuring or analysis of the fluctuations of the solar radiation (i.e. direct and diffuse radiation) in a particular area. Solar DNI, solar irradiance and atmospheric information and models can thus be integrated into a solar map, solar atlas or geographical information systems (GIS). Such models allows for defining local parameters for specific regions that may be valuable in terms of the evaluation of different solar in photovoltaic of CSP systems on simulation and synthesis platforms such as Matlab and Simulink or in linear or multi-objective optimization algorithm platforms such as COMPOSE, EnergyPLAN or DER-CAM. A dual-axis solar tracker and single-axis solar tracker may use a sun tracker program or sun tracker algorithm to position a solar dish, solar panel array, heliostat array, PV panel, solar antenna or infrared solar nantenna. A self-tracking solar concentrator performs automatic solar tracking by computing the solar vector. Solar position algorithms (TwinCAT, SPA, or PSA Algorithms) use an astronomical algorithm to calculate the position of the sun. It uses astronomical software algorithms and equations for solar tracking in the calculation of sun's position in the sky for each location on the earth at any time of day. Like an optical solar telescope, the solar position algorithm pin-points the solar reflector at the sun and locks onto the sun's position to track the sun across the sky as the sun progresses throughout the day. Optical sensors such as photodiodes, light-dependant-resistors (LDR) or photoresistors are used as optical accuracy feedback devices. Lately we also included a section in the book (with links to microprocessor code) on how the PixArt Wii infrared camera in the Wii remote or Wiimote may be used in infrared solar tracking applications. In order to harvest free energy from the sun, some automatic solar positioning systems use an optical means to direct the solar tracking device. These solar tracking strategies use optical tracking techniques, such as a sun sensor means, to direct sun rays onto a silicon or CMOS substrate to determine the X and Y coordinates of the sun's position. In a solar mems sun-sensor device, incident sunlight enters the sun sensor through a small pin-hole in a mask plate where light is exposed to a silicon substrate. In a web-camera or camera image processing sun tracking and sun following means, object tracking software performs multi object tracking or moving object tracking methods. In an solar object tracking technique, image processing software performs mathematical processing to box the outline of the apparent solar disc or sun blob within the captured image frame, while sun-localization is performed with an edge detection algorithm to determine the solar vector coordinates. An automated positioning system help maximize the yields of solar power plants through solar tracking control to harness sun's energy. In such renewable energy systems, the solar panel positioning system uses a sun tracking techniques and a solar angle calculator in positioning PV panels in photovoltaic systems and concentrated photovoltaic CPV systems. Automatic on-axis solar tracking in a PV solar tracking system can be dual-axis sun tracking or single-axis sun solar tracking. It is known that a motorized positioning system in a photovoltaic panel tracker increase energy yield and ensures increased power output, even in a single axis solar tracking configuration. Other applications such as robotic solar tracker or robotic solar tracking system uses robotica with artificial intelligence in the control optimization of energy yield in solar harvesting through a robotic tracking system. Automatic positioning systems in solar tracking designs are also used in other free energy generators, such as concentrated solar thermal power CSP and dish Stirling systems. The sun tracking device in a solar collector in a solar concentrator or solar collector Such a performs on-axis solar tracking, a dual axis solar tracker assists to harness energy from the sun through an optical solar collector, which can be a parabolic mirror, parabolic reflector, Fresnel lens or mirror array/matrix. A parabolic dish or reflector is dynamically steered using a transmission system or solar tracking slew drive mean. In steering the dish to face the sun, the power dish actuator and actuation means in a parabolic dish system optically focusses the sun's energy on the focal point of a parabolic dish or solar concentrating means. A Stirling engine, solar heat pipe, thermosyphin, solar phase change material PCM receiver, or a fibre optic sunlight receiver means is located at the focal point of the solar concentrator. The dish Stirling engine configuration is referred to as a dish Stirling system or Stirling power generation system. Hybrid solar power systems (used in combination with biogas, biofuel, petrol, ethanol, diesel, natural gas or PNG) use a combination of power sources to harness and store solar energy in a storage medium. Any multitude of energy sources can be combined through the use of controllers and the energy stored in batteries, phase change material, thermal heat storage, and in cogeneration form converted to the required power using thermodynamic cycles (organic Rankin, Brayton cycle, micro turbine, Stirling) with an inverter and charge controller.
Book Synopsis Arduino Robotics by : John-David Warren
Download or read book Arduino Robotics written by John-David Warren and published by Apress. This book was released on 2011-10-08 with total page 621 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will show you how to use your Arduino to control a variety of different robots, while providing step-by-step instructions on the entire robot building process. You'll learn Arduino basics as well as the characteristics of different types of motors used in robotics. You also discover controller methods and failsafe methods, and learn how to apply them to your project. The book starts with basic robots and moves into more complex projects, including a GPS-enabled robot, a robotic lawn mower, a fighting bot, and even a DIY Segway-clone. Introduction to the Arduino and other components needed for robotics Learn how to build motor controllers Build bots from simple line-following and bump-sensor bots to more complex robots that can mow your lawn, do battle, or even take you for a ride Please note: the print version of this title is black & white; the eBook is full color.
Book Synopsis Python Programming for Arduino by : Pratik Desai
Download or read book Python Programming for Arduino written by Pratik Desai and published by Packt Publishing Ltd. This book was released on 2015-02-27 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the book for you if you are a student, hobbyist, developer, or designer with little or no programming and hardware prototyping experience, and you want to develop IoT applications. If you are a software developer or a hardware designer and want to create connected devices applications, then this book will help you get started.
Book Synopsis Arduino Projects For Dummies by : Brock Craft
Download or read book Arduino Projects For Dummies written by Brock Craft and published by John Wiley & Sons. This book was released on 2013-06-05 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover all the amazing things you can do with Arduino Arduino is a programmable circuit board that is being used by everyone from scientists, programmers, and hardware hackers to artists, designers, hobbyists, and engineers in order to add interactivity to objects and projects and experiment with programming and electronics. This easy-to-understand book is an ideal place to start if you are interested in learning more about Arduino's vast capabilities. Featuring an array of cool projects, this Arduino beginner guide walks you through every step of each of the featured projects so that you can acquire a clear understanding of the different aspects of the Arduino board. Introduces Arduino basics to provide you with a solid foundation of understanding before you tackle your first project Features a variety of fun projects that show you how to do everything from automating your garden's watering system to constructing a keypad entry system, installing a tweeting cat flap, building a robot car, and much more Provides an easy, hands-on approach to learning more about electronics, programming, and interaction design for Makers of all ages Arduino Projects For Dummies is your guide to turning everyday electronics and plain old projects into incredible innovations. Get Connected! To find out more about Brock Craft and his recent Arduino creations, visit www.facebook.com/ArduinoProjectsForDummies
Book Synopsis Practical Arduino by : Jonathan Oxer
Download or read book Practical Arduino written by Jonathan Oxer and published by Apress. This book was released on 2011-01-26 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: Create your own Arduino-based designs, gain in-depth knowledge of the architecture of Arduino, and learn the user-friendly Arduino language all in the context of practical projects that you can build yourself at home. Get hands-on experience using a variety of projects and recipes for everything from home automation to test equipment. Arduino has taken off as an incredibly popular building block among ubicomp (ubiquitous computing) enthusiasts, robotics hobbyists, and DIY home automation developers. Authors Jonathan Oxer and Hugh Blemings provide detailed instructions for building a wide range of both practical and fun Arduino-related projects, covering areas such as hobbies, automotive, communications, home automation, and instrumentation. Take Arduino beyond "blink" to a wide variety of projects from simple to challenging Hands-on recipes for everything from home automation to interfacing with your car engine management system Explanations of techniques and references to handy resources for ubiquitous computing projects Supplementary material includes a circuit schematic reference, introductions to a range of electronic engineering principles and general hints & tips. These combine with the projects themselves to make Practical Arduino: Cool Projects for Open Source Hardware an invaluable reference for Arduino users of all levels. You'll learn a wide variety of techniques that can be applied to your own projects.
Book Synopsis Arduino and Kinect Projects by : Enrique Ramos Melgar
Download or read book Arduino and Kinect Projects written by Enrique Ramos Melgar and published by Apress. This book was released on 2012-06-09 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you've done some Arduino tinkering and wondered how you could incorporate the Kinect—or the other way around—then this book is for you. The authors of Arduino and Kinect Projects will show you how to create 10 amazing, creative projects, from simple to complex. You'll also find out how to incorporate Processing in your project design—a language very similar to the Arduino language. The ten projects are carefully designed to build on your skills at every step. Starting with the Arduino and Kinect equivalent of "Hello, World," the authors will take you through a diverse range of projects that showcase the huge range of possibilities that open up when Kinect and Arduino are combined. Gesture-based Remote Control. Control devices and home appliances with hand gestures. Kinect-networked Puppet. Play with a physical puppet remotely using your whole body. Mood Lamps. Build your own set of responsive, gesture controllable LED lamps. Drawing Robot. Control a drawing robot using a Kinect-based tangible table. Remote-controlled Vehicle. Use your body gestures to control a smart vehicle. Biometric Station. Use the Kinect for biometric recognition and checking Body Mass Indexes. 3D Modeling Interface. Learn how to use the Arduino LilyPad to build a wearable 3D modelling interface. 360o Scanner. Build a turntable scanner and scan any object 360o using only one Kinect. Delta Robot. Build and control your own fast and accurate parallel robot.
Book Synopsis Beginning Sensor Networks with Arduino and Raspberry Pi by : Charles Bell
Download or read book Beginning Sensor Networks with Arduino and Raspberry Pi written by Charles Bell and published by Apress. This book was released on 2014-01-23 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning Sensor Networks with Arduino and Raspberry Pi teaches you how to build sensor networks with Arduino, Raspberry Pi, and XBee radio modules, and even shows you how to turn your Raspberry Pi into a MySQL database server to store your sensor data! First you'll learn about the different types of sensors and sensor networks, including how to build a simple XBee network. Then you'll walk through building an Arduino-based temperature sensor and data collector, followed by building a Raspberry Pi-based sensor node. Next you'll learn different ways to store sensor data, including writing to an SD card, sending data to the cloud, and setting up a Raspberry Pi MySQL server to host your data. You even learn how to connect to and interact with a MySQL database server directly from an Arduino! Finally you'll learn how to put it all together by connecting your Arduino sensor node to your new Raspberry Pi database server. If you want to see how well Arduino and Raspberry Pi can get along, especially to create a sensor network, then Beginning Sensor Networks with Arduino and Raspberry Pi is just the book you need.
Book Synopsis Making Things Move DIY Mechanisms for Inventors, Hobbyists, and Artists by : Dustyn Roberts
Download or read book Making Things Move DIY Mechanisms for Inventors, Hobbyists, and Artists written by Dustyn Roberts and published by McGraw Hill Professional. This book was released on 2010-12-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get Your Move On! In Making Things Move: DIY Mechanisms for Inventors, Hobbyists, and Artists, you'll learn how to successfully build moving mechanisms through non-technical explanations, examples, and do-it-yourself projects--from kinetic art installations to creative toys to energy-harvesting devices. Photographs, illustrations, screen shots, and images of 3D models are included for each project. This unique resource emphasizes using off-the-shelf components, readily available materials, and accessible fabrication techniques. Simple projects give you hands-on practice applying the skills covered in each chapter, and more complex projects at the end of the book incorporate topics from multiple chapters. Turn your imaginative ideas into reality with help from this practical, inventive guide. Discover how to: Find and select materials Fasten and join parts Measure force, friction, and torque Understand mechanical and electrical power, work, and energy Create and control motion Work with bearings, couplers, gears, screws, and springs Combine simple machines for work and fun Projects include: Rube Goldberg breakfast machine Mousetrap powered car DIY motor with magnet wire Motor direction and speed control Designing and fabricating spur gears Animated creations in paper An interactive rotating platform Small vertical axis wind turbine SADbot: the seasonally affected drawing robot Make Great Stuff! TAB, an imprint of McGraw-Hill Professional, is a leading publisher of DIY technology books for makers, hackers, and electronics hobbyists.
Book Synopsis Sun Tracking and Solar Renewable Energy Harvesting by : Gerro Prinsloo
Download or read book Sun Tracking and Solar Renewable Energy Harvesting written by Gerro Prinsloo and published by Gerro Prinsloo. This book was released on 2015-11-02 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: Free to download eBook on Practical Solar Tracking Design, Solar Tracking, Sun Tracking, Sun Tracker, Solar Tracker, Follow Sun, Sun Position calculation (Azimuth, Elevation, Zenith), Sun following, Sunrise, Sunset, Moon-phase, Moonrise, Moonset calculators. In harnessing power from the sun through a solar tracker or solar tracking system, renewable energy system developers require automatic solar tracking software and solar position algorithms. On-axis sun tracking system such as the altitude-azimuth dual axis or multi-axis solar tracker systems use a sun tracking algorithm or ray tracing sensors or software to ensure the sun's passage through the sky is traced with high precision in automated solar tracker applications, right through summer solstice, solar equinox and winter solstice. Eco Friendly and Environmentally Sustainable Micro Combined Solar Heat and Power (m-CHP, m-CCHP, m-CHCP) with Microgrid Storage and Layered Smartgrid Control towards Supplying Off-Grid Rural Villages in developing BRICS countries such as Africa, India, China and Brazil. Off-grid rural villages and isolated islands areas require mCHP and trigeneration solar power plants and associated isolated smart microgrid solutions to serve the community energy needs. This article describes the development progress for such a system, also referred to as solar polygeneration. The system includes a sun tracker mechanism wherin a parabolic dish or lenses are guided by a light sensitive mechanique in a way that the solar receiver is always at right angle to the solar radiation. Solar thermal energy is then either converted into electrical energy through a free piston Stirling, or stored in a thermal storage container. The project includes the thermodynamic modeling of the plant in Matlab Simulink as well as the development of an intelligent control approach that includes smart microgrid distribution and optimization. The book includes aspects in the simulation and optimization of stand-alone hybrid renewable energy systems and co-generation in isolated or islanded microgrids. It focusses on the stepwise development of a hybrid solar driven micro combined cooling heating and power (mCCHP) compact trigeneration polygeneration and thermal energy storage (TES) system with intelligent weather prediction, weak-ahead scheduling (time horizon), and look-ahead dispatch on integrated smart microgrid distribution principles. The solar harvesting and solar thermodynamic system includes an automatic sun tracking platform based on a PLC controlled mechatronic sun tracking system that follows the sun progressing across the sky. An intelligent energy management and adaptive learning control optimization approach is proposed for autonomous off-grid remote power applications, both for thermodynamic optimization and smart micro-grid optimization for distributed energy resources (DER). The correct resolution of this load-following multi objective optimization problem is a complex task because of the high number and multi-dimensional variables, the cross-correlation and interdependency between the energy streams as well as the non-linearity in the performance of some of the system components. Exergy-based control approaches for smartgrid topologies are considered in terms of the intelligence behind the safe and reliable operation of a microgrid in an automated system that can manage energy flow in electrical as well as thermal energy systems. The standalone micro-grid solution would be suitable for a rural village, intelligent building, district energy system, campus power, shopping mall centre, isolated network, eco estate or remote island application setting where self-generation and decentralized energy system concepts play a role. Discrete digital simulation models for the thermodynamic and active demand side management systems with digital smartgrid control unit to optimize the system energy management is currently under development. Parametric simulation models for this trigeneration system (polygeneration, poligeneration, quadgeneration) are developed on the Matlab Simulink and TrnSys platforms. In terms of model predictive coding strategies, the automation controller will perform multi-objective cost optimization for energy management on a microgrid level by managing the generation and storage of electrical, heat and cooling energies in layers. Each layer has its own set of smart microgrid priorities associated with user demand side cycle predictions. Mixed Integer Linear Programming and Neural network algorithms are being modeled to perform Multi Objective Control optimization as potential optimization and adaptive learning techniques.
Book Synopsis Advanced Automotive Fault Diagnosis by : Tom Denton
Download or read book Advanced Automotive Fault Diagnosis written by Tom Denton and published by Routledge. This book was released on 2006-08-14 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: Diagnostics, or fault finding, is a fundamental part of an automotive technician's work, and as automotive systems become increasingly complex there is a greater need for good diagnostic skills. Advanced Automotive Fault Diagnosis is the only book to treat automotive diagnostics as a science rather than a check-list procedure. Each chapter includes basic principles and examples of a vehicle system followed by the appropriate diagnostic techniques, complete with useful diagrams, flow charts, case studies and self-assessment questions. The book will help new students develop diagnostic skills and help experienced technicians improve even further. This new edition is fully updated to the latest technological developments. Two new chapters have been added – On-board diagnostics and Oscilloscope diagnostics – and the coverage has been matched to the latest curricula of motor vehicle qualifications, including: IMI and C&G Technical Certificates and NVQs; Level 4 diagnostic units; BTEC National and Higher National qualifications from Edexcel; International Motor Vehicle qualifications such as C&G 3905; and ASE certification in the USA.
Book Synopsis Electric Circuits Analysis by : Khalid Al-Olimat
Download or read book Electric Circuits Analysis written by Khalid Al-Olimat and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Basics of Hacking and Penetration Testing by : Patrick Engebretson
Download or read book The Basics of Hacking and Penetration Testing written by Patrick Engebretson and published by Elsevier. This book was released on 2013-06-24 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Basics of Hacking and Penetration Testing, Second Edition, serves as an introduction to the steps required to complete a penetration test or perform an ethical hack from beginning to end. The book teaches students how to properly utilize and interpret the results of the modern-day hacking tools required to complete a penetration test. It provides a simple and clean explanation of how to effectively utilize these tools, along with a four-step methodology for conducting a penetration test or hack, thus equipping students with the know-how required to jump start their careers and gain a better understanding of offensive security.Each chapter contains hands-on examples and exercises that are designed to teach learners how to interpret results and utilize those results in later phases. Tool coverage includes: Backtrack Linux, Google reconnaissance, MetaGooFil, dig, Nmap, Nessus, Metasploit, Fast Track Autopwn, Netcat, and Hacker Defender rootkit. This is complemented by PowerPoint slides for use in class.This book is an ideal resource for security consultants, beginning InfoSec professionals, and students. - Each chapter contains hands-on examples and exercises that are designed to teach you how to interpret the results and utilize those results in later phases - Written by an author who works in the field as a Penetration Tester and who teaches Offensive Security, Penetration Testing, and Ethical Hacking, and Exploitation classes at Dakota State University - Utilizes the Kali Linux distribution and focuses on the seminal tools required to complete a penetration test
Download or read book Run Like Duck written by Mark Atkinson and published by . This book was released on 2018-11-15 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Self-proclaimed 'fat git' Mark still doesn't know why he suddenly said yes when his mate asked him to go for a run. Three years later, Mark is completing ultramarathons. Follow him as he makes every running mistake possible and guides you from couch through ouch to success! Book jacket.
Book Synopsis Making Things See by : Greg Borenstein
Download or read book Making Things See written by Greg Borenstein and published by "O'Reilly Media, Inc.". This book was released on 2012-01-27 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to creating computer applications using Microsoft Kinect features instructions on using the device with different operating systems, using 3D scanning technology, and building robot arms, all using open source programming language.