Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Architectures And Algorithms For Stable And Constructive Learning In Discrete Time Recurrent Neural Networks
Download Architectures And Algorithms For Stable And Constructive Learning In Discrete Time Recurrent Neural Networks full books in PDF, epub, and Kindle. Read online Architectures And Algorithms For Stable And Constructive Learning In Discrete Time Recurrent Neural Networks ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Recurrent Neural Networks for Prediction by : Danilo P. Mandic
Download or read book Recurrent Neural Networks for Prediction written by Danilo P. Mandic and published by . This book was released on 2001 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks consist of interconnected groups of neurons which function as processing units. Through the application of neural networks, the capabilities of conventional digital signal processing techniques can be significantly enhanced.
Download or read book Sequence Learning written by Ron Sun and published by Springer. This book was released on 2003-06-29 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequential behavior is essential to intelligence in general and a fundamental part of human activities, ranging from reasoning to language, and from everyday skills to complex problem solving. Sequence learning is an important component of learning in many tasks and application fields: planning, reasoning, robotics natural language processing, speech recognition, adaptive control, time series prediction, financial engineering, DNA sequencing, and so on. This book presents coherently integrated chapters by leading authorities and assesses the state of the art in sequence learning by introducing essential models and algorithms and by examining a variety of applications. The book offers topical sections on sequence clustering and learning with Markov models, sequence prediction and recognition with neural networks, sequence discovery with symbolic methods, sequential decision making, biologically inspired sequence learning models.
Download or read book Index Medicus written by and published by . This book was released on 2002 with total page 1684 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vols. for 1963- include as pt. 2 of the Jan. issue: Medical subject headings.
Book Synopsis Computational Intelligence in Automotive Applications by : Danil Prokhorov
Download or read book Computational Intelligence in Automotive Applications written by Danil Prokhorov and published by Springer. This book was released on 2008-05-28 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the ?elds of neural networks (NN), fuzzy logic and evolutionary computation. Various de?nitions and opinions exist, but what belongs to CI is still being debated; see, e.g., [1–3]. More recently there has been a proposal to de?ne the CI not in terms of the tools but in terms of challenging problems to be solved [4]. With this edited volume I have made an attempt to give a representative sample of contemporary CI activities in automotive applications to illustrate the state of the art. While CI researchand achievements in some specialized ?elds described (see, e.g., [5, 6]), this is the ?rst volume of its kind dedicated to automotive technology. As if re?ecting the general lack of consensus on what constitutes the ?eld of CI, this volume 1 illustrates automotive applications of not only neural and fuzzy computations which are considered to be the “standard” CI topics, but also others, such as decision trees, graphicalmodels, Support Vector Machines (SVM), multi-agent systems, etc. This book is neither an introductory text, nor a comprehensive overview of all CI research in this area. Hopefully, as a broad and representative sample of CI activities in automotive applications, it will be worth reading for both professionals and students. When the details appear insu?cient, the reader is encouraged to consult other relevant sources provided by the chapter authors.
Book Synopsis Dissertation Abstracts International by :
Download or read book Dissertation Abstracts International written by and published by . This book was released on 1999 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Qualitative Analysis and Control of Complex Neural Networks with Delays by : Zhanshan Wang
Download or read book Qualitative Analysis and Control of Complex Neural Networks with Delays written by Zhanshan Wang and published by Springer. This book was released on 2015-07-18 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the stability of the dynamical neural system, synchronization of the coupling neural system and their applications in automation control and electrical engineering. The redefined concept of stability, synchronization and consensus are adopted to provide a better explanation of the complex neural network. Researchers in the fields of dynamical systems, computer science, electrical engineering and mathematics will benefit from the discussions on complex systems. The book will also help readers to better understand the theory behind the control technique and its design.
Download or read book Computer & Control Abstracts written by and published by . This book was released on 1996 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Fundamentals of Artificial Neural Networks by : Mohamad H. Hassoun
Download or read book Fundamentals of Artificial Neural Networks written by Mohamad H. Hassoun and published by MIT Press. This book was released on 1995 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: A systematic account of artificial neural network paradigms that identifies fundamental concepts and major methodologies. Important results are integrated into the text in order to explain a wide range of existing empirical observations and commonly used heuristics.
Book Synopsis American Doctoral Dissertations by :
Download or read book American Doctoral Dissertations written by and published by . This book was released on 1998 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control by : Maria Carmo Nicoletti
Download or read book Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control written by Maria Carmo Nicoletti and published by Springer. This book was released on 2009-07-09 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Intelligence (CI) and Bioprocess are well-established research areas which have much to offer each other. Under the perspective of the CI area, Biop- cess can be considered a vast application area with a growing number of complex and challenging tasks to be dealt with, whose solutions can contribute to boosting the development of new intelligent techniques as well as to help the refinement and s- cialization of many of the already existing techniques. Under the perspective of the Bioprocess area, CI can be considered a useful repertoire of theories, methods and techniques that can contribute and offer interesting alternative approaches for solving many of its problems, particularly those hard to solve using conventional techniques. Although throughout the past years CI and Bioprocess areas have accumulated substantial specific knowledge and progress has been quick and with a high degree of success, we believe there is still a long way to go in order to use the potentialities of the available CI techniques and knowledge at their full extent, as tools for supporting problem solving in bioprocesses. One of the reasons is the fact that both areas have progressed steadily and have been continuously accumulating and refining specific knowledge; another reason is the high level of technical expertise demanded by each of them. The acquisition of technical skills, experience and good insights in either of the two areas is very demanding and a hard task to be accomplished by any professional.
Author :Leandro Nunes de Castro Publisher :Springer Science & Business Media ISBN 13 :1852335947 Total Pages :380 pages Book Rating :4.8/5 (523 download)
Book Synopsis Artificial Immune Systems: A New Computational Intelligence Approach by : Leandro Nunes de Castro
Download or read book Artificial Immune Systems: A New Computational Intelligence Approach written by Leandro Nunes de Castro and published by Springer Science & Business Media. This book was released on 2002-09-23 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Immune Systems (AIS) are adaptive systems inspired by the biological immune system and applied to problem solving. This book provides an accessible introduction that will be suitable for anyone who is beginning to study or work in this area. It gives a clear definition of an AIS, sets out the foundations of the topic (including basic algorithms), and analyses how the immune system relates to other biological systems and processes. No prior knowledge of immunology is needed - all the essential background information is covered in the introductory chapters. Key features of the book include: - A discussion of AIS in the context of Computational Intelligence; - Case studies in Autonomous Navigation, Computer Network Security, Job-Shop Scheduling and Data Analysis =B7 An extensive survey of applications; - A framework to help the reader design and understand AIS; - A web site with additional resources including pseudocodes for immune algorithms, and links to related sites. Written primarily for final year undergraduate and postgraduate students studying Artificial Intelligence, Evolutionary and Biologically Inspired Computing, this book will also be of interest to industrial and academic researchers working in related areas.
Book Synopsis Neural Network Design by : Martin T. Hagan
Download or read book Neural Network Design written by Martin T. Hagan and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Documentation Abstracts written by and published by . This book was released on 1997 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Neural Network Learning and Expert Systems by : Stephen I. Gallant
Download or read book Neural Network Learning and Expert Systems written by Stephen I. Gallant and published by MIT Press. This book was released on 1993 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: presents a unified and in-depth development of neural network learning algorithms and neural network expert systems
Book Synopsis Neural Networks and Statistical Learning by : Ke-Lin Du
Download or read book Neural Networks and Statistical Learning written by Ke-Lin Du and published by Springer Science & Business Media. This book was released on 2013-12-09 with total page 834 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a broad but in-depth introduction to neural network and machine learning in a statistical framework, this book provides a single, comprehensive resource for study and further research. All the major popular neural network models and statistical learning approaches are covered with examples and exercises in every chapter to develop a practical working understanding of the content. Each of the twenty-five chapters includes state-of-the-art descriptions and important research results on the respective topics. The broad coverage includes the multilayer perceptron, the Hopfield network, associative memory models, clustering models and algorithms, the radial basis function network, recurrent neural networks, principal component analysis, nonnegative matrix factorization, independent component analysis, discriminant analysis, support vector machines, kernel methods, reinforcement learning, probabilistic and Bayesian networks, data fusion and ensemble learning, fuzzy sets and logic, neurofuzzy models, hardware implementations, and some machine learning topics. Applications to biometric/bioinformatics and data mining are also included. Focusing on the prominent accomplishments and their practical aspects, academic and technical staff, graduate students and researchers will find that this provides a solid foundation and encompassing reference for the fields of neural networks, pattern recognition, signal processing, machine learning, computational intelligence, and data mining.
Download or read book Neural Networks written by Gérard Dreyfus and published by Springer Science & Business Media. This book was released on 2005-11-25 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks represent a powerful data processing technique that has reached maturity and broad application. When clearly understood and appropriately used, they are a mandatory component in the toolbox of any engineer who wants make the best use of the available data, in order to build models, make predictions, mine data, recognize shapes or signals, etc. Ranging from theoretical foundations to real-life applications, this book is intended to provide engineers and researchers with clear methodologies for taking advantage of neural networks in industrial, financial or banking applications, many instances of which are presented in the book. For the benefit of readers wishing to gain deeper knowledge of the topics, the book features appendices that provide theoretical details for greater insight, and algorithmic details for efficient programming and implementation. The chapters have been written by experts and edited to present a coherent and comprehensive, yet not redundant, practically oriented introduction.
Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton
Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.