Arakelov Geometry over Adelic Curves

Download Arakelov Geometry over Adelic Curves PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811517282
Total Pages : 468 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Arakelov Geometry over Adelic Curves by : Huayi Chen

Download or read book Arakelov Geometry over Adelic Curves written by Huayi Chen and published by Springer Nature. This book was released on 2020-01-29 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to build the fundament of an Arakelov theory over adelic curves in order to provide a unified framework for research on arithmetic geometry in several directions. By adelic curve is meant a field equipped with a family of absolute values parametrized by a measure space, such that the logarithmic absolute value of each non-zero element of the field is an integrable function on the measure space. In the literature, such construction has been discussed in various settings which are apparently transversal to each other. The authors first formalize the notion of adelic curves and discuss in a systematic way its algebraic covers, which are important in the study of height theory of algebraic points beyond Weil–Lang’s height theory. They then establish a theory of adelic vector bundles on adelic curves, which considerably generalizes the classic geometry of vector bundles or that of Hermitian vector bundles over an arithmetic curve. They focus on an analogue of the slope theory in the setting of adelic curves and in particular estimate the minimal slope of tensor product adelic vector bundles. Finally, by using the adelic vector bundles as a tool, a birational Arakelov geometry for projective variety over an adelic curve is developed. As an application, a vast generalization of Nakai–Moishezon’s criterion of positivity is proven in clarifying the arguments of geometric nature from several fundamental results in the classic geometry of numbers. Assuming basic knowledge of algebraic geometry and algebraic number theory, the book is almost self-contained. It is suitable for researchers in arithmetic geometry as well as graduate students focusing on these topics for their doctoral theses.

Positivity in Arakelov Geometry Over Adelic Curves

Download Positivity in Arakelov Geometry Over Adelic Curves PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031616685
Total Pages : 254 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Positivity in Arakelov Geometry Over Adelic Curves by : Huayi Chen

Download or read book Positivity in Arakelov Geometry Over Adelic Curves written by Huayi Chen and published by Springer Nature. This book was released on 2024 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents new research on Arakelov geometry over adelic curves, a novel theory of arithmetic geometry developed by the authors. It explores positivity conditions and establishes the Hilbert-Samuel formula and the equidistribution theorem in the context of adelic curves. Connections with several classical topics in Arakelov geometry and Diophantine geometry are highlighted, such as the arithmetic Hilbert-Samuel formula, positivity of line bundles, equidistribution of small subvarieties, and theorems resembling the Bogomolov conjecture. Detailed proofs and explanations are provided to ensure the text is accessible to both graduate students and experienced researchers.

Arakelov Geometry

Download Arakelov Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470410745
Total Pages : 298 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Arakelov Geometry by : Atsushi Moriwaki

Download or read book Arakelov Geometry written by Atsushi Moriwaki and published by American Mathematical Soc.. This book was released on 2014-11-05 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this book is to present the so-called birational Arakelov geometry, which can be viewed as an arithmetic analog of the classical birational geometry, i.e., the study of big linear series on algebraic varieties. After explaining classical results about the geometry of numbers, the author starts with Arakelov geometry for arithmetic curves, and continues with Arakelov geometry of arithmetic surfaces and higher-dimensional varieties. The book includes such fundamental results as arithmetic Hilbert-Samuel formula, arithmetic Nakai-Moishezon criterion, arithmetic Bogomolov inequality, the existence of small sections, the continuity of arithmetic volume function, the Lang-Bogomolov conjecture and so on. In addition, the author presents, with full details, the proof of Faltings' Riemann-Roch theorem. Prerequisites for reading this book are the basic results of algebraic geometry and the language of schemes.

Lectures on Arakelov Geometry

Download Lectures on Arakelov Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521477093
Total Pages : 190 pages
Book Rating : 4.4/5 (77 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Arakelov Geometry by : C. Soulé

Download or read book Lectures on Arakelov Geometry written by C. Soulé and published by Cambridge University Press. This book was released on 1994-09-15 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: An account for graduate students of this new technique in diophantine geometry; includes account of higher dimensional theory.

Arakelov Geometry and Diophantine Applications

Download Arakelov Geometry and Diophantine Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030575594
Total Pages : 469 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Arakelov Geometry and Diophantine Applications by : Emmanuel Peyre

Download or read book Arakelov Geometry and Diophantine Applications written by Emmanuel Peyre and published by Springer Nature. This book was released on 2021-03-10 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridging the gap between novice and expert, the aim of this book is to present in a self-contained way a number of striking examples of current diophantine problems to which Arakelov geometry has been or may be applied. Arakelov geometry can be seen as a link between algebraic geometry and diophantine geometry. Based on lectures from a summer school for graduate students, this volume consists of 12 different chapters, each written by a different author. The first chapters provide some background and introduction to the subject. These are followed by a presentation of different applications to arithmetic geometry. The final part describes the recent application of Arakelov geometry to Shimura varieties and the proof of an averaged version of Colmez's conjecture. This book thus blends initiation to fundamental tools of Arakelov geometry with original material corresponding to current research. This book will be particularly useful for graduate students and researchers interested in the connections between algebraic geometry and number theory. The prerequisites are some knowledge of number theory and algebraic geometry.

Introduction to Subfactors

Download Introduction to Subfactors PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521584205
Total Pages : 178 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Subfactors by : Vaughan F. R. Jones

Download or read book Introduction to Subfactors written by Vaughan F. R. Jones and published by Cambridge University Press. This book was released on 1997-05-15 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subfactors have been a subject of considerable research activity for about 15 years and are known to have significant relations with other fields such as low dimensional topology and algebraic quantum field theory. These notes give an introduction to the subject suitable for a student who has only a little familiarity with the theory of Hilbert space. A new pictorial approach to subfactors is presented in a late ch apter.

Arithmetic Geometry of Toric Varieties

Download Arithmetic Geometry of Toric Varieties PDF Online Free

Author :
Publisher :
ISBN 13 : 9782856297834
Total Pages : 0 pages
Book Rating : 4.2/5 (978 download)

DOWNLOAD NOW!


Book Synopsis Arithmetic Geometry of Toric Varieties by : José Ignacio Burgos Gil

Download or read book Arithmetic Geometry of Toric Varieties written by José Ignacio Burgos Gil and published by . This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors show that the height of a toric variety with respect to a toric metrized line bundle can be expressed as the integral over a polytope of a certain adelic family of concave functions. To state and prove this result, the authors study the Arakelov geometry of toric varieties. In particular, they consider models over a discrete valuation ring, metrized line bundles, and their associated measures and heights. They show that these notions can be translated in terms of convex analysis and are closely related to objects such as polyhedral complexes, concave functions, real Monge-Ampere measures, and Legendre-Fenchel duality. The authors also present a closed formula for the integral over a polytope of a function of one variable composed with a linear form. This formula allows them to compute the height of toric varieties with respect to some interesting metrics arising from polytopes and compute the height of toric projective curves with respect to the Fubini-Study metric and the height of some toric bundles.

The Mordell Conjecture

Download The Mordell Conjecture PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108845959
Total Pages : 179 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis The Mordell Conjecture by : Hideaki Ikoma

Download or read book The Mordell Conjecture written by Hideaki Ikoma and published by Cambridge University Press. This book was released on 2022-02-03 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a self-contained proof of the Mordell conjecture (Faltings's theorem) and a concise introduction to Diophantine geometry.

Some Problems of Unlikely Intersections in Arithmetic and Geometry

Download Some Problems of Unlikely Intersections in Arithmetic and Geometry PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400842719
Total Pages : 175 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Some Problems of Unlikely Intersections in Arithmetic and Geometry by : Umberto Zannier

Download or read book Some Problems of Unlikely Intersections in Arithmetic and Geometry written by Umberto Zannier and published by Princeton University Press. This book was released on 2012-03-25 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book considers the so-called Unlikely Intersections, a topic that embraces well-known issues, such as Lang's and Manin-Mumford's, concerning torsion points in subvarieties of tori or abelian varieties. More generally, the book considers algebraic subgroups that meet a given subvariety in a set of unlikely dimension. The book is an expansion of the Hermann Weyl Lectures delivered by Umberto Zannier at the Institute for Advanced Study in Princeton in May 2010. The book consists of four chapters and seven brief appendixes, the last six by David Masser. The first chapter considers multiplicative algebraic groups, presenting proofs of several developments, ranging from the origins to recent results, and discussing many applications and relations with other contexts. The second chapter considers an analogue in arithmetic and several applications of this. The third chapter introduces a new method for approaching some of these questions, and presents a detailed application of this (by Masser and the author) to a relative case of the Manin-Mumford issue. The fourth chapter focuses on the André-Oort conjecture (outlining work by Pila).

Foundations of Arithmetic Differential Geometry

Download Foundations of Arithmetic Differential Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 147043623X
Total Pages : 357 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Arithmetic Differential Geometry by : Alexandru Buium

Download or read book Foundations of Arithmetic Differential Geometry written by Alexandru Buium and published by American Mathematical Soc.. This book was released on 2017-06-09 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.

The Arithmetic of Elliptic Curves

Download The Arithmetic of Elliptic Curves PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475719205
Total Pages : 414 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis The Arithmetic of Elliptic Curves by : Joseph H. Silverman

Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.

Multidimensional Residue Theory and Applications

Download Multidimensional Residue Theory and Applications PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470471124
Total Pages : 556 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Multidimensional Residue Theory and Applications by : Alekos Vidras

Download or read book Multidimensional Residue Theory and Applications written by Alekos Vidras and published by American Mathematical Society. This book was released on 2023-10-18 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Residue theory is an active area of complex analysis with connections and applications to fields as diverse as partial differential and integral equations, computer algebra, arithmetic or diophantine geometry, and mathematical physics. Multidimensional Residue Theory and Applications defines and studies multidimensional residues via analytic continuation for holomorphic bundle-valued current maps. This point of view offers versatility and flexibility to the tools and constructions proposed, allowing these residues to be defined and studied outside the classical case of complete intersection. The book goes on to show how these residues are algebraic in nature, and how they relate and apply to a wide range of situations, most notably to membership problems, such as the Briançon–Skoda theorem and Hilbert's Nullstellensatz, to arithmetic intersection theory and to tropical geometry. This book will supersede the existing literature in this area, which dates back more than three decades. It will be appreciated by mathematicians and graduate students in multivariate complex analysis. But thanks to the gentle treatment of the one-dimensional case in Chapter 1 and the rich background material in the appendices, it may also be read by specialists in arithmetic, diophantine, or tropical geometry, as well as in mathematical physics or computer algebra.

An Invitation To Noncommutative Geometry

Download An Invitation To Noncommutative Geometry PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814475629
Total Pages : 515 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis An Invitation To Noncommutative Geometry by : Matilde Marcolli

Download or read book An Invitation To Noncommutative Geometry written by Matilde Marcolli and published by World Scientific. This book was released on 2008-02-11 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first existing volume that collects lectures on this important and fast developing subject in mathematics. The lectures are given by leading experts in the field and the range of topics is kept as broad as possible by including both the algebraic and the differential aspects of noncommutative geometry as well as recent applications to theoretical physics and number theory.

Algebra, Arithmetic, and Geometry

Download Algebra, Arithmetic, and Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817647473
Total Pages : 700 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Algebra, Arithmetic, and Geometry by : Yuri Tschinkel

Download or read book Algebra, Arithmetic, and Geometry written by Yuri Tschinkel and published by Springer Science & Business Media. This book was released on 2010-04-11 with total page 700 pages. Available in PDF, EPUB and Kindle. Book excerpt: EMAlgebra, Arithmetic, and Geometry: In Honor of Yu. I. ManinEM consists of invited expository and research articles on new developments arising from Manin’s outstanding contributions to mathematics.

Berkeley Lectures on P-adic Geometry

Download Berkeley Lectures on P-adic Geometry PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691202095
Total Pages : 260 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Berkeley Lectures on P-adic Geometry by : Peter Scholze

Download or read book Berkeley Lectures on P-adic Geometry written by Peter Scholze and published by Princeton University Press. This book was released on 2020-05-26 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Berkeley Lectures on p-adic Geometry presents an important breakthrough in arithmetic geometry. In 2014, leading mathematician Peter Scholze delivered a series of lectures at the University of California, Berkeley, on new ideas in the theory of p-adic geometry. Building on his discovery of perfectoid spaces, Scholze introduced the concept of “diamonds,” which are to perfectoid spaces what algebraic spaces are to schemes. The introduction of diamonds, along with the development of a mixed-characteristic shtuka, set the stage for a critical advance in the discipline. In this book, Peter Scholze and Jared Weinstein show that the moduli space of mixed-characteristic shtukas is a diamond, raising the possibility of using the cohomology of such spaces to attack the Langlands conjectures for a reductive group over a p-adic field. This book follows the informal style of the original Berkeley lectures, with one chapter per lecture. It explores p-adic and perfectoid spaces before laying out the newer theory of shtukas and their moduli spaces. Points of contact with other threads of the subject, including p-divisible groups, p-adic Hodge theory, and Rapoport-Zink spaces, are thoroughly explained. Berkeley Lectures on p-adic Geometry will be a useful resource for students and scholars working in arithmetic geometry and number theory.

Potential Theory and Dynamics on the Berkovich Projective Line

Download Potential Theory and Dynamics on the Berkovich Projective Line PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821849247
Total Pages : 466 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Potential Theory and Dynamics on the Berkovich Projective Line by : Matthew Baker

Download or read book Potential Theory and Dynamics on the Berkovich Projective Line written by Matthew Baker and published by American Mathematical Soc.. This book was released on 2010-03-10 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to develop the foundations of potential theory and rational dynamics on the Berkovich projective line over an arbitrary complete, algebraically closed non-Archimedean field. In addition to providing a concrete and ``elementary'' introduction to Berkovich analytic spaces and to potential theory and rational iteration on the Berkovich line, the book contains applications to arithmetic geometry and arithmetic dynamics. A number of results in the book are new, and most have not previously appeared in book form. Three appendices--on analysis, $\mathbb{R}$-trees, and Berkovich's general theory of analytic spaces--are included to make the book as self-contained as possible. The authors first give a detailed description of the topological structure of the Berkovich projective line and then introduce the Hsia kernel, the fundamental kernel for potential theory. Using the theory of metrized graphs, they define a Laplacian operator on the Berkovich line and construct theories of capacities, harmonic and subharmonic functions, and Green's functions, all of which are strikingly similar to their classical complex counterparts. After developing a theory of multiplicities for rational functions, they give applications to non-Archimedean dynamics, including local and global equidistribution theorems, fixed point theorems, and Berkovich space analogues of many fundamental results from the classical Fatou-Julia theory of rational iteration. They illustrate the theory with concrete examples and exposit Rivera-Letelier's results concerning rational dynamics over the field of $p$-adic complex numbers. They also establish Berkovich space versions of arithmetic results such as the Fekete-Szego theorem and Bilu's equidistribution theorem.

Representation Theory, Complex Analysis, and Integral Geometry

Download Representation Theory, Complex Analysis, and Integral Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 081764816X
Total Pages : 282 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Representation Theory, Complex Analysis, and Integral Geometry by : Bernhard Krötz

Download or read book Representation Theory, Complex Analysis, and Integral Geometry written by Bernhard Krötz and published by Springer Science & Business Media. This book was released on 2011-12-13 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume targets graduate students and researchers in the fields of representation theory, automorphic forms, Hecke algebras, harmonic analysis, number theory.