Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Approximate Em Algorithms For State Space Models With Markov Regime Changes
Download Approximate Em Algorithms For State Space Models With Markov Regime Changes full books in PDF, epub, and Kindle. Read online Approximate Em Algorithms For State Space Models With Markov Regime Changes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Approximate EM Algorithms for State Space Models with Markov Regime Changes by : Tianni Zhou
Download or read book Approximate EM Algorithms for State Space Models with Markov Regime Changes written by Tianni Zhou and published by . This book was released on 2002 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis State-space Models with Regime Switching by : Chang-Jin Kim
Download or read book State-space Models with Regime Switching written by Chang-Jin Kim and published by Mit Press. This book was released on 1999 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both state-space models and Markov switching models have been highly productive paths for empirical research in macroeconomics and finance. This book presents recent advances in econometric methods that make feasible the estimation of models that have both features. One approach, in the classical framework, approximates the likelihood function; the other, in the Bayesian framework, uses Gibbs-sampling to simulate posterior distributions from data.The authors present numerous applications of these approaches in detail: decomposition of time series into trend and cycle, a new index of coincident economic indicators, approaches to modeling monetary policy uncertainty, Friedman's "plucking" model of recessions, the detection of turning points in the business cycle and the question of whether booms and recessions are duration-dependent, state-space models with heteroskedastic disturbances, fads and crashes in financial markets, long-run real exchange rates, and mean reversion in asset returns.
Book Synopsis State-Space Models with Regime Switching by : Chang-Jin Kim
Download or read book State-Space Models with Regime Switching written by Chang-Jin Kim and published by MIT Press. This book was released on 2017-11-03 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both state-space models and Markov switching models have been highly productive paths for empirical research in macroeconomics and finance. This book presents recent advances in econometric methods that make feasible the estimation of models that have both features. One approach, in the classical framework, approximates the likelihood function; the other, in the Bayesian framework, uses Gibbs-sampling to simulate posterior distributions from data. The authors present numerous applications of these approaches in detail: decomposition of time series into trend and cycle, a new index of coincident economic indicators, approaches to modeling monetary policy uncertainty, Friedman's "plucking" model of recessions, the detection of turning points in the business cycle and the question of whether booms and recessions are duration-dependent, state-space models with heteroskedastic disturbances, fads and crashes in financial markets, long-run real exchange rates, and mean reversion in asset returns.
Book Synopsis Dissertation Abstracts International by :
Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Inference in Hidden Markov Models by : Olivier Cappé
Download or read book Inference in Hidden Markov Models written by Olivier Cappé and published by Springer Science & Business Media. This book was released on 2006-04-12 with total page 656 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.
Book Synopsis Algorithms for Reinforcement Learning by : Csaba Grossi
Download or read book Algorithms for Reinforcement Learning written by Csaba Grossi and published by Springer Nature. This book was released on 2022-05-31 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration
Book Synopsis Switching Processes in Queueing Models by : Vladimir Anisimov
Download or read book Switching Processes in Queueing Models written by Vladimir Anisimov and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Switching processes, invented by the author in 1977, is the main tool used in the investigation of traffic problems from automotive to telecommunications. The title provides a new approach to low traffic problems based on the analysis of flows of rare events and queuing models. In the case of fast switching, averaging principle and diffusion approximation results are proved and applied to the investigation of transient phenomena for wide classes of overloading queuing networks. The book is devoted to developing the asymptotic theory for the class of switching queuing models which covers models in a Markov or semi-Markov environment, models under the influence of flows of external or internal perturbations, unreliable and hierarchic networks, etc.
Book Synopsis Advances in Markov-Switching Models by : James D. Hamilton
Download or read book Advances in Markov-Switching Models written by James D. Hamilton and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of state-of-the-art papers on the properties of business cycles and financial analysis. The individual contributions cover new advances in Markov-switching models with applications to business cycle research and finance. The introduction surveys the existing methods and new results of the last decade. Individual chapters study features of the U. S. and European business cycles with particular focus on the role of monetary policy, oil shocks and co movements among key variables. The short-run versus long-run consequences of an economic recession are also discussed. Another area that is featured is an extensive analysis of currency crises and the possibility of bubbles or fads in stock prices. A concluding chapter offers useful new results on testing for this kind of regime-switching behaviour. Overall, the book provides a state-of-the-art over view of new directions in methods and results for estimation and inference based on the use of Markov-switching time-series analysis. A special feature of the book is that it includes an illustration of a wide range of applications based on a common methodology. It is expected that the theme of the book will be of particular interest to the macroeconomics readers as well as econometrics professionals, scholars and graduate students. We wish to express our gratitude to the authors for their strong contributions and the reviewers for their assistance and careful attention to detail in their reports.
Book Synopsis Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) by : Cheng Few Lee
Download or read book Handbook Of Financial Econometrics, Mathematics, Statistics, And Machine Learning (In 4 Volumes) written by Cheng Few Lee and published by World Scientific. This book was released on 2020-07-30 with total page 5053 pages. Available in PDF, EPUB and Kindle. Book excerpt: This four-volume handbook covers important concepts and tools used in the fields of financial econometrics, mathematics, statistics, and machine learning. Econometric methods have been applied in asset pricing, corporate finance, international finance, options and futures, risk management, and in stress testing for financial institutions. This handbook discusses a variety of econometric methods, including single equation multiple regression, simultaneous equation regression, and panel data analysis, among others. It also covers statistical distributions, such as the binomial and log normal distributions, in light of their applications to portfolio theory and asset management in addition to their use in research regarding options and futures contracts.In both theory and methodology, we need to rely upon mathematics, which includes linear algebra, geometry, differential equations, Stochastic differential equation (Ito calculus), optimization, constrained optimization, and others. These forms of mathematics have been used to derive capital market line, security market line (capital asset pricing model), option pricing model, portfolio analysis, and others.In recent times, an increased importance has been given to computer technology in financial research. Different computer languages and programming techniques are important tools for empirical research in finance. Hence, simulation, machine learning, big data, and financial payments are explored in this handbook.Led by Distinguished Professor Cheng Few Lee from Rutgers University, this multi-volume work integrates theoretical, methodological, and practical issues based on his years of academic and industry experience.
Book Synopsis Continuous-Time Markov Chains and Applications by : G. George Yin
Download or read book Continuous-Time Markov Chains and Applications written by G. George Yin and published by Springer Science & Business Media. This book was released on 2012-11-14 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a systematic treatment of singularly perturbed systems that naturally arise in control and optimization, queueing networks, manufacturing systems, and financial engineering. It presents results on asymptotic expansions of solutions of Komogorov forward and backward equations, properties of functional occupation measures, exponential upper bounds, and functional limit results for Markov chains with weak and strong interactions. To bridge the gap between theory and applications, a large portion of the book is devoted to applications in controlled dynamic systems, production planning, and numerical methods for controlled Markovian systems with large-scale and complex structures in the real-world problems. This second edition has been updated throughout and includes two new chapters on asymptotic expansions of solutions for backward equations and hybrid LQG problems. The chapters on analytic and probabilistic properties of two-time-scale Markov chains have been almost completely rewritten and the notation has been streamlined and simplified. This book is written for applied mathematicians, engineers, operations researchers, and applied scientists. Selected material from the book can also be used for a one semester advanced graduate-level course in applied probability and stochastic processes.
Book Synopsis Computational Finance and Its Applications III by : M. Costantino
Download or read book Computational Finance and Its Applications III written by M. Costantino and published by WIT Press. This book was released on 2008 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring papers from the Third International Conference on Computational Finance and its Applications, the text includes papers that encompass a wide range of topics such as modern financial services technologies, derivatives pricing, portfolio management and asset allocation, and intelligent trading agents.
Book Synopsis Hidden Markov Models for Time Series by : Walter Zucchini
Download or read book Hidden Markov Models for Time Series written by Walter Zucchini and published by CRC Press. This book was released on 2017-12-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data
Book Synopsis Markov-Switching Vector Autoregressions by : Hans-Martin Krolzig
Download or read book Markov-Switching Vector Autoregressions written by Hans-Martin Krolzig and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contributes to re cent developments on the statistical analysis of multiple time series in the presence of regime shifts. Markov-switching models have become popular for modelling non-linearities and regime shifts, mainly, in univariate eco nomic time series. This study is intended to provide a systematic and operational ap proach to the econometric modelling of dynamic systems subject to shifts in regime, based on the Markov-switching vector autoregressive model. The study presents a comprehensive analysis of the theoretical properties of Markov-switching vector autoregressive processes and the related statistical methods. The statistical concepts are illustrated with applications to empirical business cyde research. This monograph is a revised version of my dissertation which has been accepted by the Economics Department of the Humboldt-University of Berlin in 1996. It con sists mainly of unpublished material which has been presented during the last years at conferences and in seminars. The major parts of this study were written while I was supported by the Deutsche Forschungsgemeinschajt (DFG), Berliner Graduier tenkolleg Angewandte Mikroökonomik and Sondeiforschungsbereich 373 at the Free University and Humboldt-University of Berlin. Work was finally completed in the project The Econometrics of Macroeconomic Forecasting founded by the Economic and Social Research Council (ESRC) at the Institute of Economies and Statistics, University of Oxford. It is a pleasure to record my thanks to these institutions for their support of my research embodied in this study.
Author :Sylvia Frühwirth-Schnatter Publisher :Springer Science & Business Media ISBN 13 :0387357688 Total Pages :506 pages Book Rating :4.3/5 (873 download)
Book Synopsis Finite Mixture and Markov Switching Models by : Sylvia Frühwirth-Schnatter
Download or read book Finite Mixture and Markov Switching Models written by Sylvia Frühwirth-Schnatter and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.
Book Synopsis Complex Systems in Finance and Econometrics by : Robert A. Meyers
Download or read book Complex Systems in Finance and Econometrics written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2010-11-03 with total page 919 pages. Available in PDF, EPUB and Kindle. Book excerpt: Finance, Econometrics and System Dynamics presents an overview of the concepts and tools for analyzing complex systems in a wide range of fields. The text integrates complexity with deterministic equations and concepts from real world examples, and appeals to a broad audience.
Book Synopsis Partially Observed Markov Decision Processes by : Vikram Krishnamurthy
Download or read book Partially Observed Markov Decision Processes written by Vikram Krishnamurthy and published by Cambridge University Press. This book was released on 2016-03-21 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers formulation, algorithms, and structural results of partially observed Markov decision processes, whilst linking theory to real-world applications in controlled sensing. Computations are kept to a minimum, enabling students and researchers in engineering, operations research, and economics to understand the methods and determine the structure of their optimal solution.
Book Synopsis Business Cycles by : Francis X. Diebold
Download or read book Business Cycles written by Francis X. Diebold and published by Princeton University Press. This book was released on 2020-10-06 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the most sophisticated and up-to-date econometric analysis of business cycles now available. Francis Diebold and Glenn Rudebusch have long been acknowledged as leading experts on business cycles. And here they present a highly integrative collection of their most important essays on the subject, along with a detailed introduction that draws together the book's principal themes and findings. Diebold and Rudebusch use the latest quantitative methods to address five principal questions about the measurement, modeling, and forecasting of business cycles. They ask whether business cycles have become more moderate in the postwar period, concluding that recessions have, in fact, been shorter and shallower. They consider whether economic expansions and contractions tend to die of "old age." Contrary to popular wisdom, they find little evidence that expansions become more fragile the longer they last, although they do find that contractions are increasingly likely to end as they age. The authors discuss the defining characteristics of business cycles, focusing on how economic variables move together and on the timing of the slow alternation between expansions and contractions. They explore the difficulties of distinguishing between long-term trends in the economy and cyclical fluctuations. And they examine how business cycles can be forecast, looking in particular at how to predict turning points in cycles, rather than merely the level of future economic activity. They show here that the index of leading economic indicators is a poor predictor of future economic activity, and consider what we can learn from other indicators, such as financial variables. Throughout, the authors make use of a variety of advanced econometric techniques, including nonparametric analysis, fractional integration, and regime-switching models. Business Cycles is crucial reading for policymakers, bankers, and business executives.