Author : Karthik Ramasubramanian
Publisher : Packt Publishing Ltd
ISBN 13 : 1838557164
Total Pages : 503 pages
Book Rating : 4.8/5 (385 download)
Book Synopsis Applied Supervised Learning with R by : Karthik Ramasubramanian
Download or read book Applied Supervised Learning with R written by Karthik Ramasubramanian and published by Packt Publishing Ltd. This book was released on 2019-05-31 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the ropes of supervised machine learning with R by studying popular real-world use-cases, and understand how it drives object detection in driver less cars, customer churn, and loan default prediction. Key FeaturesStudy supervised learning algorithms by using real-world datasets Fine tune optimal parameters with hyperparameter optimizationSelect the best algorithm using the model evaluation frameworkBook Description R provides excellent visualization features that are essential for exploring data before using it in automated learning. Applied Supervised Learning with R helps you cover the complete process of employing R to develop applications using supervised machine learning algorithms for your business needs. The book starts by helping you develop your analytical thinking to create a problem statement using business inputs and domain research. You will then learn different evaluation metrics that compare various algorithms, and later progress to using these metrics to select the best algorithm for your problem. After finalizing the algorithm you want to use, you will study the hyperparameter optimization technique to fine-tune your set of optimal parameters. To prevent you from overfitting your model, a dedicated section will even demonstrate how you can add various regularization terms. By the end of this book, you will have the advanced skills you need for modeling a supervised machine learning algorithm that precisely fulfills your business needs. What you will learnDevelop analytical thinking to precisely identify a business problemWrangle data with dplyr, tidyr, and reshape2Visualize data with ggplot2Validate your supervised machine learning model using k-fold Optimize hyperparameters with grid and random search, and Bayesian optimizationDeploy your model on Amazon Web Services (AWS) Lambda with plumberImprove your model’s performance with feature selection and dimensionality reductionWho this book is for This book is specially designed for novice and intermediate-level data analysts, data scientists, and data engineers who want to explore different methods of supervised machine learning and its various use cases. Some background in statistics, probability, calculus, linear algebra, and programming will help you thoroughly understand and follow the content of this book.