Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Applied Nonparametric Statistics
Download Applied Nonparametric Statistics full books in PDF, epub, and Kindle. Read online Applied Nonparametric Statistics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Applied Nonparametric Statistics by : Wayne W. Daniel
Download or read book Applied Nonparametric Statistics written by Wayne W. Daniel and published by Brooks/Cole. This book was released on 2000-06-30 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most commonly used nonparametric statistical techniques by emphasizing applications rather than theory. Exercises and examples are drawn from various disciplines including agriculture, biology, sociology, education, psychology, medicine, business, geology, and anthropology. The applications of techniques are presented in a step-by-step format that is repeated for all illustrative examples. Concepts are reinforced with many references to statistical literature to show the relevance to real-world problems. Chapters contain references of available computer programs and software packages that apply to methods presented in the book.
Book Synopsis Applied Nonparametric Statistics by : Wayne W. Daniel
Download or read book Applied Nonparametric Statistics written by Wayne W. Daniel and published by Wadsworth Publishing Company. This book was released on 1990 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most commonly used nonparametric statistical techniques by emphasizing applications rather than theory. Exercises and examples are drawn from various disciplines including agriculture, biology, sociology, education, psychology, medicine, business, geology, and anthropology. The applications of techniques are presented in a step-by-step format that is repeated for all illustrative examples. Concepts are reinforced with many references to statistical literature to show the relevance to real-world problems. Chapters contain references of available computer programs and software packages that apply to methods presented in the book.
Book Synopsis Applied Nonparametric Statistics in Reliability by : M. Luz Gámiz
Download or read book Applied Nonparametric Statistics in Reliability written by M. Luz Gámiz and published by Springer Science & Business Media. This book was released on 2011-02-14 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric statistics has probably become the leading methodology for researchers performing data analysis. It is nevertheless true that, whereas these methods have already proved highly effective in other applied areas of knowledge such as biostatistics or social sciences, nonparametric analyses in reliability currently form an interesting area of study that has not yet been fully explored. Applied Nonparametric Statistics in Reliability is focused on the use of modern statistical methods for the estimation of dependability measures of reliability systems that operate under different conditions. The scope of the book includes: smooth estimation of the reliability function and hazard rate of non-repairable systems; study of stochastic processes for modelling the time evolution of systems when imperfect repairs are performed; nonparametric analysis of discrete and continuous time semi-Markov processes; isotonic regression analysis of the structure function of a reliability system, and lifetime regression analysis. Besides the explanation of the mathematical background, several numerical computations or simulations are presented as illustrative examples. The corresponding computer-based methods have been implemented using R and MATLAB®. A concrete modelling scheme is chosen for each practical situation and, in consequence, a nonparametric inference procedure is conducted. Applied Nonparametric Statistics in Reliability will serve the practical needs of scientists (statisticians and engineers) working on applied reliability subjects.
Book Synopsis Nonparametric Statistics with Applications to Science and Engineering by : Paul H. Kvam
Download or read book Nonparametric Statistics with Applications to Science and Engineering written by Paul H. Kvam and published by John Wiley & Sons. This book was released on 2007-08-24 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: A thorough and definitive book that fully addresses traditional and modern-day topics of nonparametric statistics This book presents a practical approach to nonparametric statistical analysis and provides comprehensive coverage of both established and newly developed methods. With the use of MATLAB, the authors present information on theorems and rank tests in an applied fashion, with an emphasis on modern methods in regression and curve fitting, bootstrap confidence intervals, splines, wavelets, empirical likelihood, and goodness-of-fit testing. Nonparametric Statistics with Applications to Science and Engineering begins with succinct coverage of basic results for order statistics, methods of categorical data analysis, nonparametric regression, and curve fitting methods. The authors then focus on nonparametric procedures that are becoming more relevant to engineering researchers and practitioners. The important fundamental materials needed to effectively learn and apply the discussed methods are also provided throughout the book. Complete with exercise sets, chapter reviews, and a related Web site that features downloadable MATLAB applications, this book is an essential textbook for graduate courses in engineering and the physical sciences and also serves as a valuable reference for researchers who seek a more comprehensive understanding of modern nonparametric statistical methods.
Book Synopsis Applied Nonparametric Regression by : Wolfgang Härdle
Download or read book Applied Nonparametric Regression written by Wolfgang Härdle and published by Cambridge University Press. This book was released on 1990 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to bring together in one place the techniques for regression curve smoothing involving more than one variable.
Book Synopsis The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics by : Jeffrey Racine
Download or read book The Oxford Handbook of Applied Nonparametric and Semiparametric Econometrics and Statistics written by Jeffrey Racine and published by Oxford University Press. This book was released on 2014-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, edited by Jeffrey Racine, Liangjun Su, and Aman Ullah, contains the latest research on nonparametric and semiparametric econometrics and statistics. Chapters by leading international econometricians and statisticians highlight the interface between econometrics and statistical methods for nonparametric and semiparametric procedures.
Book Synopsis Applied Nonparametric Statistical Methods by : Peter Sprent
Download or read book Applied Nonparametric Statistical Methods written by Peter Sprent and published by CRC Press. This book was released on 2016-04-19 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: While preserving the clear, accessible style of previous editions, Applied Nonparametric Statistical Methods, Fourth Edition reflects the latest developments in computer-intensive methods that deal with intractable analytical problems and unwieldy data sets. Reorganized and with additional material, this edition begins with a brief summary of some
Book Synopsis Nonparametric Statistics by : Gregory W. Corder
Download or read book Nonparametric Statistics written by Gregory W. Corder and published by John Wiley & Sons. This book was released on 2014-04-14 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: “...a very useful resource for courses in nonparametric statistics in which the emphasis is on applications rather than on theory. It also deserves a place in libraries of all institutions where introductory statistics courses are taught." –CHOICE This Second Edition presents a practical and understandable approach that enhances and expands the statistical toolset for readers. This book includes: New coverage of the sign test and the Kolmogorov-Smirnov two-sample test in an effort to offer a logical and natural progression to statistical power SPSS® (Version 21) software and updated screen captures to demonstrate how to perform and recognize the steps in the various procedures Data sets and odd-numbered solutions provided in an appendix, and tables of critical values Supplementary material to aid in reader comprehension, which includes: narrated videos and screen animations with step-by-step instructions on how to follow the tests using SPSS; online decision trees to help users determine the needed type of statistical test; and additional solutions not found within the book.
Book Synopsis Nonparametric Statistics for Non-Statisticians by : Gregory W. Corder
Download or read book Nonparametric Statistics for Non-Statisticians written by Gregory W. Corder and published by John Wiley & Sons. This book was released on 2011-09-20 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical and understandable approach to nonparametric statistics for researchers across diverse areas of study As the importance of nonparametric methods in modern statistics continues to grow, these techniques are being increasingly applied to experimental designs across various fields of study. However, researchers are not always properly equipped with the knowledge to correctly apply these methods. Nonparametric Statistics for Non-Statisticians: A Step-by-Step Approach fills a void in the current literature by addressing nonparametric statistics in a manner that is easily accessible for readers with a background in the social, behavioral, biological, and physical sciences. Each chapter follows the same comprehensive format, beginning with a general introduction to the particular topic and a list of main learning objectives. A nonparametric procedure is then presented and accompanied by context-based examples that are outlined in a step-by-step fashion. Next, SPSS® screen captures are used to demonstrate how to perform and recognize the steps in the various procedures. Finally, the authors identify and briefly describe actual examples of corresponding nonparametric tests from diverse fields. Using this organized structure, the book outlines essential skills for the application of nonparametric statistical methods, including how to: Test data for normality and randomness Use the Wilcoxon signed rank test to compare two related samples Apply the Mann-Whitney U test to compare two unrelated samples Compare more than two related samples using the Friedman test Employ the Kruskal-Wallis H test to compare more than two unrelated samples Compare variables of ordinal or dichotomous scales Test for nominal scale data A detailed appendix provides guidance on inputting and analyzing the presented data using SPSS®, and supplemental tables of critical values are provided. In addition, the book's FTP site houses supplemental data sets and solutions for further practice. Extensively classroom tested, Nonparametric Statistics for Non-Statisticians is an ideal book for courses on nonparametric statistics at the upper-undergraduate and graduate levels. It is also an excellent reference for professionals and researchers in the social, behavioral, and health sciences who seek a review of nonparametric methods and relevant applications.
Book Synopsis An Introduction to Nonparametric Statistics by : John E. Kolassa
Download or read book An Introduction to Nonparametric Statistics written by John E. Kolassa and published by CRC Press. This book was released on 2020-09-28 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Nonparametric Statistics presents techniques for statistical analysis in the absence of strong assumptions about the distributions generating the data. Rank-based and resampling techniques are heavily represented, but robust techniques are considered as well. These techniques include one-sample testing and estimation, multi-sample testing and estimation, and regression. Attention is paid to the intellectual development of the field, with a thorough review of bibliographical references. Computational tools, in R and SAS, are developed and illustrated via examples. Exercises designed to reinforce examples are included. Features Rank-based techniques including sign, Kruskal-Wallis, Friedman, Mann-Whitney and Wilcoxon tests are presented Tests are inverted to produce estimates and confidence intervals Multivariate tests are explored Techniques reflecting the dependence of a response variable on explanatory variables are presented Density estimation is explored The bootstrap and jackknife are discussed This text is intended for a graduate student in applied statistics. The course is best taken after an introductory course in statistical methodology, elementary probability, and regression. Mathematical prerequisites include calculus through multivariate differentiation and integration, and, ideally, a course in matrix algebra.
Book Synopsis Applied Nonparametric Econometrics by : Daniel J. Henderson
Download or read book Applied Nonparametric Econometrics written by Daniel J. Henderson and published by Cambridge University Press. This book was released on 2015-01-19 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The majority of empirical research in economics ignores the potential benefits of nonparametric methods, while the majority of advances in nonparametric theory ignores the problems faced in applied econometrics. This book helps bridge this gap between applied economists and theoretical nonparametric econometricians. It discusses in depth, and in terms that someone with only one year of graduate econometrics can understand, basic to advanced nonparametric methods. The analysis starts with density estimation and motivates the procedures through methods that should be familiar to the reader. It then moves on to kernel regression, estimation with discrete data, and advanced methods such as estimation with panel data and instrumental variables models. The book pays close attention to the issues that arise with programming, computing speed, and application. In each chapter, the methods discussed are applied to actual data, paying attention to presentation of results and potential pitfalls.
Book Synopsis Nonparametric Statistical Methods by : Myles Hollander
Download or read book Nonparametric Statistical Methods written by Myles Hollander and published by John Wiley & Sons. This book was released on 2013-11-25 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the Second Edition “This book should be an essential part of the personal library of every practicing statistician.”—Technometrics Thoroughly revised and updated, the new edition of Nonparametric Statistical Methods includes additional modern topics and procedures, more practical data sets, and new problems from real-life situations. The book continues to emphasize the importance of nonparametric methods as a significant branch of modern statistics and equips readers with the conceptual and technical skills necessary to select and apply the appropriate procedures for any given situation. Written by leading statisticians, Nonparametric Statistical Methods, Third Edition provides readers with crucial nonparametric techniques in a variety of settings, emphasizing the assumptions underlying the methods. The book provides an extensive array of examples that clearly illustrate how to use nonparametric approaches for handling one- or two-sample location and dispersion problems, dichotomous data, and one-way and two-way layout problems. In addition, the Third Edition features: The use of the freely available R software to aid in computation and simulation, including many new R programs written explicitly for this new edition New chapters that address density estimation, wavelets, smoothing, ranked set sampling, and Bayesian nonparametrics Problems that illustrate examples from agricultural science, astronomy, biology, criminology, education, engineering, environmental science, geology, home economics, medicine, oceanography, physics, psychology, sociology, and space science Nonparametric Statistical Methods, Third Edition is an excellent reference for applied statisticians and practitioners who seek a review of nonparametric methods and their relevant applications. The book is also an ideal textbook for upper-undergraduate and first-year graduate courses in applied nonparametric statistics.
Book Synopsis Nonparametric Methods in Statistics with SAS Applications by : Olga Korosteleva
Download or read book Nonparametric Methods in Statistics with SAS Applications written by Olga Korosteleva and published by CRC Press. This book was released on 2013-08-19 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for a graduate course in applied statistics, Nonparametric Methods in Statistics with SAS Applications teaches students how to apply nonparametric techniques to statistical data. It starts with the tests of hypotheses and moves on to regression modeling, time-to-event analysis, density estimation, and resampling methods.The text begins wit
Book Synopsis Robust Nonparametric Statistical Methods by : Thomas P. Hettmansperger
Download or read book Robust Nonparametric Statistical Methods written by Thomas P. Hettmansperger and published by John Wiley & Sons. This book was released on 1998 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering an alternative to traditional statistical procedures which are based on least squares fitting, the authors cover such topics as one and two sample location models, linear models, and multivariate models. Both theory and applications are examined.
Book Synopsis All of Nonparametric Statistics by : Larry Wasserman
Download or read book All of Nonparametric Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.
Book Synopsis Nonparametric Statistical Methods Using R by : John Kloke
Download or read book Nonparametric Statistical Methods Using R written by John Kloke and published by CRC Press. This book was released on 2014-10-09 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Practical Guide to Implementing Nonparametric and Rank-Based Procedures Nonparametric Statistical Methods Using R covers traditional nonparametric methods and rank-based analyses, including estimation and inference for models ranging from simple location models to general linear and nonlinear models for uncorrelated and correlated responses. The authors emphasize applications and statistical computation. They illustrate the methods with many real and simulated data examples using R, including the packages Rfit and npsm. The book first gives an overview of the R language and basic statistical concepts before discussing nonparametrics. It presents rank-based methods for one- and two-sample problems, procedures for regression models, computation for general fixed-effects ANOVA and ANCOVA models, and time-to-event analyses. The last two chapters cover more advanced material, including high breakdown fits for general regression models and rank-based inference for cluster correlated data. The book can be used as a primary text or supplement in a course on applied nonparametric or robust procedures and as a reference for researchers who need to implement nonparametric and rank-based methods in practice. Through numerous examples, it shows readers how to apply these methods using R.
Book Synopsis Introduction to Nonparametric Regression by : K. Takezawa
Download or read book Introduction to Nonparametric Regression written by K. Takezawa and published by John Wiley & Sons. This book was released on 2005-12-02 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: An easy-to-grasp introduction to nonparametric regression This book's straightforward, step-by-step approach provides an excellent introduction to the field for novices of nonparametric regression. Introduction to Nonparametric Regression clearly explains the basic concepts underlying nonparametric regression and features: * Thorough explanations of various techniques, which avoid complex mathematics and excessive abstract theory to help readers intuitively grasp the value of nonparametric regression methods * Statistical techniques accompanied by clear numerical examples that further assist readers in developing and implementing their own solutions * Mathematical equations that are accompanied by a clear explanation of how the equation was derived The first chapter leads with a compelling argument for studying nonparametric regression and sets the stage for more advanced discussions. In addition to covering standard topics, such as kernel and spline methods, the book provides in-depth coverage of the smoothing of histograms, a topic generally not covered in comparable texts. With a learning-by-doing approach, each topical chapter includes thorough S-Plus? examples that allow readers to duplicate the same results described in the chapter. A separate appendix is devoted to the conversion of S-Plus objects to R objects. In addition, each chapter ends with a set of problems that test readers' grasp of key concepts and techniques and also prepares them for more advanced topics. This book is recommended as a textbook for undergraduate and graduate courses in nonparametric regression. Only a basic knowledge of linear algebra and statistics is required. In addition, this is an excellent resource for researchers and engineers in such fields as pattern recognition, speech understanding, and data mining. Practitioners who rely on nonparametric regression for analyzing data in the physical, biological, and social sciences, as well as in finance and economics, will find this an unparalleled resource.