Applications of Statistical and Machine Learning Methods in Bioinformatics

Download Applications of Statistical and Machine Learning Methods in Bioinformatics PDF Online Free

Author :
Publisher : Peter Lang Gmbh, Internationaler Verlag Der Wissenschaften
ISBN 13 :
Total Pages : 136 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Applications of Statistical and Machine Learning Methods in Bioinformatics by : Jaroslaw Meller

Download or read book Applications of Statistical and Machine Learning Methods in Bioinformatics written by Jaroslaw Meller and published by Peter Lang Gmbh, Internationaler Verlag Der Wissenschaften. This book was released on 2007 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical and machine learning approaches play an increasingly important role in biomedical research. In the absence of fundamental (first principle-based) models, or because of the computational complexity of such models, statistical and machine learning approaches are being used to identify interesting structures in the data (e.g. patterns in gene expression profiles), correlate these patterns and other «input» attributes with (e.g. medically) relevant outcomes, and to develop predictors that can generalize from known data and make predictions for new data instances. Examples of important applications include structural bioinformatics, in which one of the goals is to predict elements of protein structure from amino acid sequence, or microarray gene expression profiling, in which the goal is to discover interesting patterns in gene expression data and correlate them with clinically relevant phenotypes. This volume includes papers submitted to the BIT 2005 workshop on the Applications of Machine and Statistical Learning Methods in Bioinformatics that took place in September 2005 in Torun, Poland.

Introduction to Machine Learning and Bioinformatics

Download Introduction to Machine Learning and Bioinformatics PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780367387235
Total Pages : 384 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Machine Learning and Bioinformatics by : Sushmita Mitra

Download or read book Introduction to Machine Learning and Bioinformatics written by Sushmita Mitra and published by CRC Press. This book was released on 2019-08-30 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lucidly Integrates Current Activities Focusing on both fundamentals and recent advances, Introduction to Machine Learning and Bioinformatics presents an informative and accessible account of the ways in which these two increasingly intertwined areas relate to each other. Examines Connections between Machine Learning & Bioinformatics The book begins with a brief historical overview of the technological developments in biology. It then describes the main problems in bioinformatics and the fundamental concepts and algorithms of machine learning. After forming this foundation, the authors explore how machine learning techniques apply to bioinformatics problems, such as electron density map interpretation, biclustering, DNA sequence analysis, and tumor classification. They also include exercises at the end of some chapters and offer supplementary materials on their website. Explores How Machine Learning Techniques Can Help Solve Bioinformatics Problems Shedding light on aspects of both machine learning and bioinformatics, this text shows how the innovative tools and techniques of machine learning help extract knowledge from the deluge of information produced by today's biological experiments.

Statistical Modeling and Machine Learning for Molecular Biology

Download Statistical Modeling and Machine Learning for Molecular Biology PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482258609
Total Pages : 281 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Statistical Modeling and Machine Learning for Molecular Biology by : Alan Moses

Download or read book Statistical Modeling and Machine Learning for Molecular Biology written by Alan Moses and published by CRC Press. This book was released on 2017-01-06 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Assumes no background in statistics or computers • Covers most major types of molecular biological data • Covers the statistical and machine learning concepts of most practical utility (P-values, clustering, regression, regularization and classification) • Intended for graduate students beginning careers in molecular biology, systems biology, bioengineering and genetics

Bioinformatics

Download Bioinformatics PDF Online Free

Author :
Publisher : MIT Press (MA)
ISBN 13 : 9780262024426
Total Pages : 351 pages
Book Rating : 4.0/5 (244 download)

DOWNLOAD NOW!


Book Synopsis Bioinformatics by : Pierre Baldi

Download or read book Bioinformatics written by Pierre Baldi and published by MIT Press (MA). This book was released on 1998 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: An unprecedented wealth of data is being generated by genome sequencing projects and other experimental efforts to determine the structure and function of biological molecules. The demands and opportunities for interpreting these data are expanding more than ever. Biotechnology, pharmacology, and medicine will be particularly affected by the new results and the increased understanding of life at the molecular level. Bioinformatics is the development and application of computer methods for analysis, interpretation, and prediction, as well as for the design of experiments. It has emerged as a strategic frontier between biology and computer science. Machine learning approaches (e.g., neural networks, hidden Markov models, and belief networks) are ideally suited for areas where there is a lot of data but little theory—and this is exactly the situation in molecular biology. As with its predecessor, statistical model fitting, the goal in machine learning is to extract useful information from a body of data by building good probabilistic models. The particular twist behind machine learning, however, is to automate the process as much as possible. In this book, Pierre Baldi and Soren Brunak present the key machine learning approaches and apply them to the computational problems encountered in the analysis of biological data. The book is aimed at two types of researchers and students. First are the biologists and biochemists who need to understand new data-driven algorithms, such as neural networks and hidden Markov models, in the context of biological sequences and their molecular structure and function. Second are those with a primary background in physics, mathematics, statistics, or computer science who need to know more about specific applications in molecular biology.

Application of Novel Statistical and Machine-learning Methods to High-dimensional Clinical Cancer and (Multi-)Omics data

Download Application of Novel Statistical and Machine-learning Methods to High-dimensional Clinical Cancer and (Multi-)Omics data PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889714365
Total Pages : 136 pages
Book Rating : 4.8/5 (897 download)

DOWNLOAD NOW!


Book Synopsis Application of Novel Statistical and Machine-learning Methods to High-dimensional Clinical Cancer and (Multi-)Omics data by : Chao Xu

Download or read book Application of Novel Statistical and Machine-learning Methods to High-dimensional Clinical Cancer and (Multi-)Omics data written by Chao Xu and published by Frontiers Media SA. This book was released on 2022-02-02 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Kernel-based Data Fusion for Machine Learning

Download Kernel-based Data Fusion for Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642194060
Total Pages : 223 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Kernel-based Data Fusion for Machine Learning by : Shi Yu

Download or read book Kernel-based Data Fusion for Machine Learning written by Shi Yu and published by Springer. This book was released on 2011-03-29 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data fusion problems arise frequently in many different fields. This book provides a specific introduction to data fusion problems using support vector machines. In the first part, this book begins with a brief survey of additive models and Rayleigh quotient objectives in machine learning, and then introduces kernel fusion as the additive expansion of support vector machines in the dual problem. The second part presents several novel kernel fusion algorithms and some real applications in supervised and unsupervised learning. The last part of the book substantiates the value of the proposed theories and algorithms in MerKator, an open software to identify disease relevant genes based on the integration of heterogeneous genomic data sources in multiple species. The topics presented in this book are meant for researchers or students who use support vector machines. Several topics addressed in the book may also be interesting to computational biologists who want to tackle data fusion challenges in real applications. The background required of the reader is a good knowledge of data mining, machine learning and linear algebra.

Statistical and Machine Learning Approaches for Network Analysis

Download Statistical and Machine Learning Approaches for Network Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111834698X
Total Pages : 269 pages
Book Rating : 4.1/5 (183 download)

DOWNLOAD NOW!


Book Synopsis Statistical and Machine Learning Approaches for Network Analysis by : Matthias Dehmer

Download or read book Statistical and Machine Learning Approaches for Network Analysis written by Matthias Dehmer and published by John Wiley & Sons. This book was released on 2012-06-26 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the multidisciplinary nature of complex networks through machine learning techniques Statistical and Machine Learning Approaches for Network Analysis provides an accessible framework for structurally analyzing graphs by bringing together known and novel approaches on graph classes and graph measures for classification. By providing different approaches based on experimental data, the book uniquely sets itself apart from the current literature by exploring the application of machine learning techniques to various types of complex networks. Comprised of chapters written by internationally renowned researchers in the field of interdisciplinary network theory, the book presents current and classical methods to analyze networks statistically. Methods from machine learning, data mining, and information theory are strongly emphasized throughout. Real data sets are used to showcase the discussed methods and topics, which include: A survey of computational approaches to reconstruct and partition biological networks An introduction to complex networks—measures, statistical properties, and models Modeling for evolving biological networks The structure of an evolving random bipartite graph Density-based enumeration in structured data Hyponym extraction employing a weighted graph kernel Statistical and Machine Learning Approaches for Network Analysis is an excellent supplemental text for graduate-level, cross-disciplinary courses in applied discrete mathematics, bioinformatics, pattern recognition, and computer science. The book is also a valuable reference for researchers and practitioners in the fields of applied discrete mathematics, machine learning, data mining, and biostatistics.

Data Analytics in Bioinformatics

Download Data Analytics in Bioinformatics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111978560X
Total Pages : 433 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Data Analytics in Bioinformatics by : Rabinarayan Satpathy

Download or read book Data Analytics in Bioinformatics written by Rabinarayan Satpathy and published by John Wiley & Sons. This book was released on 2021-01-20 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

An Introduction to Statistical Learning

Download An Introduction to Statistical Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031387473
Total Pages : 617 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Statistical Learning by : Gareth James

Download or read book An Introduction to Statistical Learning written by Gareth James and published by Springer Nature. This book was released on 2023-08-01 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Statistical Learning provides an accessible overview of the field of statistical learning, an essential toolset for making sense of the vast and complex data sets that have emerged in fields ranging from biology to finance, marketing, and astrophysics in the past twenty years. This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree-based methods, support vector machines, clustering, deep learning, survival analysis, multiple testing, and more. Color graphics and real-world examples are used to illustrate the methods presented. This book is targeted at statisticians and non-statisticians alike, who wish to use cutting-edge statistical learning techniques to analyze their data. Four of the authors co-wrote An Introduction to Statistical Learning, With Applications in R (ISLR), which has become a mainstay of undergraduate and graduate classrooms worldwide, as well as an important reference book for data scientists. One of the keys to its success was that each chapter contains a tutorial on implementing the analyses and methods presented in the R scientific computing environment. However, in recent years Python has become a popular language for data science, and there has been increasing demand for a Python-based alternative to ISLR. Hence, this book (ISLP) covers the same materials as ISLR but with labs implemented in Python. These labs will be useful both for Python novices, as well as experienced users.

Handbook of Statistical Bioinformatics

Download Handbook of Statistical Bioinformatics PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662659026
Total Pages : 406 pages
Book Rating : 4.6/5 (626 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Bioinformatics by : Henry Horng-Shing Lu

Download or read book Handbook of Statistical Bioinformatics written by Henry Horng-Shing Lu and published by Springer Nature. This book was released on 2022-12-08 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its second edition, this handbook collects authoritative contributions on modern methods and tools in statistical bioinformatics with a focus on the interface between computational statistics and cutting-edge developments in computational biology. The three parts of the book cover statistical methods for single-cell analysis, network analysis, and systems biology, with contributions by leading experts addressing key topics in probabilistic and statistical modeling and the analysis of massive data sets generated by modern biotechnology. This handbook will serve as a useful reference source for students, researchers and practitioners in statistics, computer science and biological and biomedical research, who are interested in the latest developments in computational statistics as applied to computational biology.

Modern Statistics for Modern Biology

Download Modern Statistics for Modern Biology PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108427022
Total Pages : 407 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Modern Statistics for Modern Biology by : SUSAN. HUBER HOLMES (WOLFGANG.)

Download or read book Modern Statistics for Modern Biology written by SUSAN. HUBER HOLMES (WOLFGANG.) and published by Cambridge University Press. This book was released on 2018 with total page 407 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Multivariate Statistical Machine Learning Methods for Genomic Prediction

Download Multivariate Statistical Machine Learning Methods for Genomic Prediction PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030890104
Total Pages : 707 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Statistical Machine Learning Methods for Genomic Prediction by : Osval Antonio Montesinos López

Download or read book Multivariate Statistical Machine Learning Methods for Genomic Prediction written by Osval Antonio Montesinos López and published by Springer Nature. This book was released on 2022-02-14 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Applications of Statistical and Machine Learning Methods in Bioinformatics

Download Applications of Statistical and Machine Learning Methods in Bioinformatics PDF Online Free

Author :
Publisher : Peter Lang Pub Incorporated
ISBN 13 : 9780820487939
Total Pages : 128 pages
Book Rating : 4.4/5 (879 download)

DOWNLOAD NOW!


Book Synopsis Applications of Statistical and Machine Learning Methods in Bioinformatics by : Jaroslaw Meller

Download or read book Applications of Statistical and Machine Learning Methods in Bioinformatics written by Jaroslaw Meller and published by Peter Lang Pub Incorporated. This book was released on 2007-01-01 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical and machine learning approaches play an increasingly important role in biomedical research. In the absence of fundamental (first principle-based) models, or because of the computational complexity of such models, statistical and machine learning approaches are being used to identify interesting structures in the data (e.g. patterns in gene expression profiles), correlate these patterns and other -input attributes with (e.g. medically) relevant outcomes, and to develop predictors that can generalize from known data and make predictions for new data instances. Examples of important applications include structural bioinformatics, in which one of the goals is to predict elements of protein structure from amino acid sequence, or microarray gene expression profiling, in which the goal is to discover interesting patterns in gene expression data and correlate them with clinically relevant phenotypes. This volume includes papers submitted to the BIT 2005 workshop on the Applications of Machine and Statistical Learning Methods in Bioinformatics that took place in September 2005 in Torun, Poland."

OMICS

Download OMICS PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466562811
Total Pages : 721 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis OMICS by : Debmalya Barh

Download or read book OMICS written by Debmalya Barh and published by CRC Press. This book was released on 2013-03-26 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: With the advent of new technologies and acquired knowledge, the number of fields in omics and their applications in diverse areas are rapidly increasing in the postgenomics era. Such emerging fields—including pharmacogenomics, toxicogenomics, regulomics, spliceomics, metagenomics, and environomics—present budding solutions to combat global challenges in biomedicine, agriculture, and the environment. OMICS: Applications in Biomedical, Agricultural, and Environmental Sciences provides valuable insights into the applications of modern omics technologies to real-world problems in the life sciences. Filling a gap in the literature, it offers a broad, multidisciplinary view of current and emerging applications of omics in a single volume. Written by highly experienced active researchers, each chapter describes a particular area of omics and the associated technologies and applications. Topics covered include: Proteomics, epigenomics, and pharmacogenomics Toxicogenomics and the assessment of environmental pollutants Applications of plant metabolomics Nutrigenomics and its therapeutic applications Microalgal omics and omics approaches in biofuel production Next-generation sequencing and omics technology for transgenic plant analysis Omics approaches in crop improvement Engineering dark-operative chlorophyll synthesis Computational regulomics Omics techniques for the analysis of RNA splicing New fields, including metagenomics, glycomics, and miRNA Breast cancer biomarkers for early detection Environomics strategies for environmental sustainability This timely book explores a wide range of omics application areas in the biomedical, agricultural, and environmental sciences. Throughout, it highlights working solutions as well as open problems and future challenges. Demonstrating the diversity of omics, it introduces readers to state-of-the-art developments and trends in omics-driven research.

Data Analysis, Machine Learning and Knowledge Discovery

Download Data Analysis, Machine Learning and Knowledge Discovery PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3319015958
Total Pages : 461 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Data Analysis, Machine Learning and Knowledge Discovery by : Myra Spiliopoulou

Download or read book Data Analysis, Machine Learning and Knowledge Discovery written by Myra Spiliopoulou and published by Springer Science & Business Media. This book was released on 2013-11-26 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data analysis, machine learning and knowledge discovery are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medicine, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and knowledge discovery presented during the 36th annual conference of the German Classification Society (GfKl). The conference was held at the University of Hildesheim (Germany) in August 2012. ​

Biological Data Mining

Download Biological Data Mining PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420086855
Total Pages : 736 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Biological Data Mining by : Jake Y. Chen

Download or read book Biological Data Mining written by Jake Y. Chen and published by CRC Press. This book was released on 2009-09-01 with total page 736 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like a data-guzzling turbo engine, advanced data mining has been powering post-genome biological studies for two decades. Reflecting this growth, Biological Data Mining presents comprehensive data mining concepts, theories, and applications in current biological and medical research. Each chapter is written by a distinguished team of interdisciplin

Data Mining in Bioinformatics

Download Data Mining in Bioinformatics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781852336714
Total Pages : 356 pages
Book Rating : 4.3/5 (367 download)

DOWNLOAD NOW!


Book Synopsis Data Mining in Bioinformatics by : Jason T. L. Wang

Download or read book Data Mining in Bioinformatics written by Jason T. L. Wang and published by Springer Science & Business Media. This book was released on 2005 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written especially for computer scientists, all necessary biology is explained. Presents new techniques on gene expression data mining, gene mapping for disease detection, and phylogenetic knowledge discovery.