Apache Airflow Best Practices

Download Apache Airflow Best Practices PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1805129333
Total Pages : 188 pages
Book Rating : 4.8/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Apache Airflow Best Practices by : Dylan Intorf

Download or read book Apache Airflow Best Practices written by Dylan Intorf and published by Packt Publishing Ltd. This book was released on 2024-10-31 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Confidently orchestrate your data pipelines with Apache Airflow by applying industry best practices and scalable strategies Key Features Understand the steps for migrating from Airflow 1.x to 2.x and explore the new features and improvements in version 2.x Learn Apache Airflow workflow authoring through real-world use cases Uncover strategies to operationalize your Airflow instance and pipelines for resilient operations and high throughput Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionData professionals face the monumental task of managing complex data pipelines, orchestrating workflows across diverse systems, and ensuring scalable, reliable data processing. This definitive guide to mastering Apache Airflow, written by experts in engineering, data strategy, and problem-solving across tech, financial, and life sciences industries, is your key to overcoming these challenges. It covers everything from the basics of Airflow and its core components to advanced topics such as custom plugin development, multi-tenancy, and cloud deployment. Starting with an introduction to data orchestration and the significant updates in Apache Airflow 2.0, this book takes you through the essentials of DAG authoring, managing Airflow components, and connecting to external data sources. Through real-world use cases, you’ll gain practical insights into implementing ETL pipelines and machine learning workflows in your environment. You’ll also learn how to deploy Airflow in cloud environments, tackle operational considerations for scaling, and apply best practices for CI/CD and monitoring. By the end of this book, you’ll be proficient in operating and using Apache Airflow, authoring high-quality workflows in Python for your specific use cases, and making informed decisions crucial for production-ready implementation.What you will learn Explore the new features and improvements in Apache Airflow 2.0 Design and build data pipelines using DAGs Implement ETL pipelines, ML workflows, and other advanced use cases Develop and deploy custom plugins and UI extensions Deploy and manage Apache Airflow in cloud environments such as AWS, GCP, and Azure Describe a path for the scaling of your environment over time Apply best practices for monitoring and maintaining Airflow Who this book is for This book is for data engineers, developers, IT professionals, and data scientists who want to optimize workflow orchestration with Apache Airflow. It's perfect for those who recognize Airflow’s potential and want to avoid common implementation pitfalls. Whether you’re new to data, an experienced professional, or a manager seeking insights, this guide will support you. A functional understanding of Python, some business experience, and basic DevOps skills are helpful. While prior experience with Airflow is not required, it is beneficial.

Mastering Apache Airflow

Download Mastering Apache Airflow PDF Online Free

Author :
Publisher : Cybellium Ltd
ISBN 13 :
Total Pages : 189 pages
Book Rating : 4.8/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Mastering Apache Airflow by : Cybellium Ltd

Download or read book Mastering Apache Airflow written by Cybellium Ltd and published by Cybellium Ltd. This book was released on with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: Empower Your Data Workflow Orchestration and Automation Are you ready to embark on a journey into the world of data workflow orchestration and automation with Apache Airflow? "Mastering Apache Airflow" is your comprehensive guide to harnessing the full potential of this powerful platform for managing complex data pipelines. Whether you're a data engineer striving to optimize workflows or a business analyst aiming to streamline data processing, this book equips you with the knowledge and tools to master the art of Airflow-based workflow automation.

Machine Learning Model Serving Patterns and Best Practices

Download Machine Learning Model Serving Patterns and Best Practices PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1803242531
Total Pages : 336 pages
Book Rating : 4.8/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Model Serving Patterns and Best Practices by : Md Johirul Islam

Download or read book Machine Learning Model Serving Patterns and Best Practices written by Md Johirul Islam and published by Packt Publishing Ltd. This book was released on 2022-12-30 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become a successful machine learning professional by effortlessly deploying machine learning models to production and implementing cloud-based machine learning models for widespread organizational use Key FeaturesLearn best practices about bringing your models to productionExplore the tools available for serving ML models and the differences between themUnderstand state-of-the-art monitoring approaches for model serving implementationsBook Description Serving patterns enable data science and ML teams to bring their models to production. Most ML models are not deployed for consumers, so ML engineers need to know the critical steps for how to serve an ML model. This book will cover the whole process, from the basic concepts like stateful and stateless serving to the advantages and challenges of each. Batch, real-time, and continuous model serving techniques will also be covered in detail. Later chapters will give detailed examples of keyed prediction techniques and ensemble patterns. Valuable associated technologies like TensorFlow severing, BentoML, and RayServe will also be discussed, making sure that you have a good understanding of the most important methods and techniques in model serving. Later, you'll cover topics such as monitoring and performance optimization, as well as strategies for managing model drift and handling updates and versioning. The book will provide practical guidance and best practices for ensuring that your model serving pipeline is robust, scalable, and reliable. Additionally, this book will explore the use of cloud-based platforms and services for model serving using AWS SageMaker with the help of detailed examples. By the end of this book, you'll be able to save and serve your model using state-of-the-art techniques. What you will learnExplore specific patterns in model serving that are crucial for every data science professionalUnderstand how to serve machine learning models using different techniquesDiscover the various approaches to stateless servingImplement advanced techniques for batch and streaming model servingGet to grips with the fundamental concepts in continued model evaluationServe machine learning models using a fully managed AWS Sagemaker cloud solutionWho this book is for This book is for machine learning engineers and data scientists who want to bring their models into production. Those who are familiar with machine learning and have experience of using machine learning techniques but are looking for options and strategies to bring their models to production will find great value in this book. Working knowledge of Python programming is a must to get started.

Amazon SageMaker Best Practices

Download Amazon SageMaker Best Practices PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1801077762
Total Pages : 348 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Amazon SageMaker Best Practices by : Sireesha Muppala

Download or read book Amazon SageMaker Best Practices written by Sireesha Muppala and published by Packt Publishing Ltd. This book was released on 2021-09-24 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overcome advanced challenges in building end-to-end ML solutions by leveraging the capabilities of Amazon SageMaker for developing and integrating ML models into production Key FeaturesLearn best practices for all phases of building machine learning solutions - from data preparation to monitoring models in productionAutomate end-to-end machine learning workflows with Amazon SageMaker and related AWSDesign, architect, and operate machine learning workloads in the AWS CloudBook Description Amazon SageMaker is a fully managed AWS service that provides the ability to build, train, deploy, and monitor machine learning models. The book begins with a high-level overview of Amazon SageMaker capabilities that map to the various phases of the machine learning process to help set the right foundation. You'll learn efficient tactics to address data science challenges such as processing data at scale, data preparation, connecting to big data pipelines, identifying data bias, running A/B tests, and model explainability using Amazon SageMaker. As you advance, you'll understand how you can tackle the challenge of training at scale, including how to use large data sets while saving costs, monitoring training resources to identify bottlenecks, speeding up long training jobs, and tracking multiple models trained for a common goal. Moving ahead, you'll find out how you can integrate Amazon SageMaker with other AWS to build reliable, cost-optimized, and automated machine learning applications. In addition to this, you'll build ML pipelines integrated with MLOps principles and apply best practices to build secure and performant solutions. By the end of the book, you'll confidently be able to apply Amazon SageMaker's wide range of capabilities to the full spectrum of machine learning workflows. What you will learnPerform data bias detection with AWS Data Wrangler and SageMaker ClarifySpeed up data processing with SageMaker Feature StoreOvercome labeling bias with SageMaker Ground TruthImprove training time with the monitoring and profiling capabilities of SageMaker DebuggerAddress the challenge of model deployment automation with CI/CD using the SageMaker model registryExplore SageMaker Neo for model optimizationImplement data and model quality monitoring with Amazon Model MonitorImprove training time and reduce costs with SageMaker data and model parallelismWho this book is for This book is for expert data scientists responsible for building machine learning applications using Amazon SageMaker. Working knowledge of Amazon SageMaker, machine learning, deep learning, and experience using Jupyter Notebooks and Python is expected. Basic knowledge of AWS related to data, security, and monitoring will help you make the most of the book.

Data Pipelines with Apache Airflow

Download Data Pipelines with Apache Airflow PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638356831
Total Pages : 480 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Data Pipelines with Apache Airflow by : Julian de Ruiter

Download or read book Data Pipelines with Apache Airflow written by Julian de Ruiter and published by Simon and Schuster. This book was released on 2021-04-05 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: "An Airflow bible. Useful for all kinds of users, from novice to expert." - Rambabu Posa, Sai Aashika Consultancy Data Pipelines with Apache Airflow teaches you how to build and maintain effective data pipelines. A successful pipeline moves data efficiently, minimizing pauses and blockages between tasks, keeping every process along the way operational. Apache Airflow provides a single customizable environment for building and managing data pipelines, eliminating the need for a hodgepodge collection of tools, snowflake code, and homegrown processes. Using real-world scenarios and examples, Data Pipelines with Apache Airflow teaches you how to simplify and automate data pipelines, reduce operational overhead, and smoothly integrate all the technologies in your stack. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Data pipelines manage the flow of data from initial collection through consolidation, cleaning, analysis, visualization, and more. Apache Airflow provides a single platform you can use to design, implement, monitor, and maintain your pipelines. Its easy-to-use UI, plug-and-play options, and flexible Python scripting make Airflow perfect for any data management task. About the book Data Pipelines with Apache Airflow teaches you how to build and maintain effective data pipelines. You’ll explore the most common usage patterns, including aggregating multiple data sources, connecting to and from data lakes, and cloud deployment. Part reference and part tutorial, this practical guide covers every aspect of the directed acyclic graphs (DAGs) that power Airflow, and how to customize them for your pipeline’s needs. What's inside Build, test, and deploy Airflow pipelines as DAGs Automate moving and transforming data Analyze historical datasets using backfilling Develop custom components Set up Airflow in production environments About the reader For DevOps, data engineers, machine learning engineers, and sysadmins with intermediate Python skills. About the author Bas Harenslak and Julian de Ruiter are data engineers with extensive experience using Airflow to develop pipelines for major companies. Bas is also an Airflow committer. Table of Contents PART 1 - GETTING STARTED 1 Meet Apache Airflow 2 Anatomy of an Airflow DAG 3 Scheduling in Airflow 4 Templating tasks using the Airflow context 5 Defining dependencies between tasks PART 2 - BEYOND THE BASICS 6 Triggering workflows 7 Communicating with external systems 8 Building custom components 9 Testing 10 Running tasks in containers PART 3 - AIRFLOW IN PRACTICE 11 Best practices 12 Operating Airflow in production 13 Securing Airflow 14 Project: Finding the fastest way to get around NYC PART 4 - IN THE CLOUDS 15 Airflow in the clouds 16 Airflow on AWS 17 Airflow on Azure 18 Airflow in GCP

Data Engineering Best Practices

Download Data Engineering Best Practices PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1803247363
Total Pages : 550 pages
Book Rating : 4.8/5 (32 download)

DOWNLOAD NOW!


Book Synopsis Data Engineering Best Practices by : Richard J. Schiller

Download or read book Data Engineering Best Practices written by Richard J. Schiller and published by Packt Publishing Ltd. This book was released on 2024-10-11 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore modern data engineering techniques and best practices to build scalable, efficient, and future-proof data processing systems across cloud platforms Key Features Architect and engineer optimized data solutions in the cloud with best practices for performance and cost-effectiveness Explore design patterns and use cases to balance roles, technology choices, and processes for a future-proof design Learn from experts to avoid common pitfalls in data engineering projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionRevolutionize your approach to data processing in the fast-paced business landscape with this essential guide to data engineering. Discover the power of scalable, efficient, and secure data solutions through expert guidance on data engineering principles and techniques. Written by two industry experts with over 60 years of combined experience, it offers deep insights into best practices, architecture, agile processes, and cloud-based pipelines. You’ll start by defining the challenges data engineers face and understand how this agile and future-proof comprehensive data solution architecture addresses them. As you explore the extensive toolkit, mastering the capabilities of various instruments, you’ll gain the knowledge needed for independent research. Covering everything you need, right from data engineering fundamentals, the guide uses real-world examples to illustrate potential solutions. It elevates your skills to architect scalable data systems, implement agile development processes, and design cloud-based data pipelines. The book further equips you with the knowledge to harness serverless computing and microservices to build resilient data applications. By the end, you'll be armed with the expertise to design and deliver high-performance data engineering solutions that are not only robust, efficient, and secure but also future-ready.What you will learn Architect scalable data solutions within a well-architected framework Implement agile software development processes tailored to your organization's needs Design cloud-based data pipelines for analytics, machine learning, and AI-ready data products Optimize data engineering capabilities to ensure performance and long-term business value Apply best practices for data security, privacy, and compliance Harness serverless computing and microservices to build resilient, scalable, and trustworthy data pipelines Who this book is for If you are a data engineer, ETL developer, or big data engineer who wants to master the principles and techniques of data engineering, this book is for you. A basic understanding of data engineering concepts, ETL processes, and big data technologies is expected. This book is also for professionals who want to explore advanced data engineering practices, including scalable data solutions, agile software development, and cloud-based data processing pipelines.

Google Certification Guide - Google Professional Data Engineer

Download Google Certification Guide - Google Professional Data Engineer PDF Online Free

Author :
Publisher : Cybellium Ltd
ISBN 13 :
Total Pages : 182 pages
Book Rating : 4.8/5 (713 download)

DOWNLOAD NOW!


Book Synopsis Google Certification Guide - Google Professional Data Engineer by : Cybellium Ltd

Download or read book Google Certification Guide - Google Professional Data Engineer written by Cybellium Ltd and published by Cybellium Ltd. This book was released on with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: Google Certification Guide - Google Professional Data Engineer Navigate the Data Landscape with Google Cloud Expertise Embark on a journey to become a Google Professional Data Engineer with this comprehensive guide. Tailored for data professionals seeking to leverage Google Cloud's powerful data solutions, this book provides a deep dive into the core concepts, practices, and tools necessary to excel in the field of data engineering. Inside, You'll Explore: Fundamentals to Advanced Data Concepts: Understand the full spectrum of Google Cloud data services, from BigQuery and Dataflow to AI and machine learning integrations. Practical Data Engineering Scenarios: Learn through hands-on examples and real-life case studies that demonstrate how to effectively implement data solutions on Google Cloud. Focused Exam Strategy: Prepare for the certification exam with detailed insights into the exam format, including key topics, study strategies, and practice questions. Current Trends and Best Practices: Stay abreast of the latest advancements in Google Cloud data technologies, ensuring your skills are up-to-date and industry-relevant. Authored by a Data Engineering Expert Written by an experienced data engineer, this guide bridges practical application with theoretical knowledge, offering a comprehensive and practical learning experience. Your Comprehensive Guide to Data Engineering Certification Whether you're an aspiring data engineer or an experienced professional looking to validate your Google Cloud skills, this book is an invaluable resource, guiding you through the nuances of data engineering on Google Cloud and preparing you for the Professional Data Engineer exam. Elevate Your Data Engineering Skills This guide is more than a certification prep book; it's a deep dive into the art of data engineering in the Google Cloud ecosystem, designed to equip you with advanced skills and knowledge for a successful career in data engineering. Begin Your Data Engineering Journey Step into the world of Google Cloud data engineering with confidence. This guide is your first step towards mastering the concepts and practices of data engineering and achieving certification as a Google Professional Data Engineer. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com

Google Certification Guide - Google Professional Machine Learning Engineer

Download Google Certification Guide - Google Professional Machine Learning Engineer PDF Online Free

Author :
Publisher : Cybellium Ltd
ISBN 13 :
Total Pages : 171 pages
Book Rating : 4.8/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Google Certification Guide - Google Professional Machine Learning Engineer by : Cybellium Ltd

Download or read book Google Certification Guide - Google Professional Machine Learning Engineer written by Cybellium Ltd and published by Cybellium Ltd. This book was released on with total page 171 pages. Available in PDF, EPUB and Kindle. Book excerpt: Google Certification Guide - Google Professional Machine Learning Engineer Unlock the World of Machine Learning on Google Cloud Embark on a transformative journey to become a Google Professional Machine Learning Engineer with this comprehensive guide. Designed for those who aspire to master the application of machine learning techniques and tools in the Google Cloud environment, this book is an essential resource for professionals seeking to harness the power of ML in their projects and workflows. What Awaits Inside: Advanced ML Concepts and Practices: Dive deep into the world of machine learning on Google Cloud, covering services like AI Platform, TensorFlow, and BigQuery ML. Real-World Applications: Learn through practical scenarios and hands-on examples, illustrating the effective implementation of machine learning models and solutions on Google Cloud. Strategic Exam Preparation: Gain crucial insights into the certification exam's structure and content, complemented by comprehensive practice questions and preparation strategies. Cutting-Edge ML Trends: Stay updated with the latest advancements in Google Cloud machine learning technologies, ensuring your skills remain relevant and innovative. Authored by a Machine Learning Expert Written by an experienced practitioner in the field of machine learning on Google Cloud, this guide bridges the gap between theoretical knowledge and practical application, offering a rich and comprehensive learning experience. Your Comprehensive Guide to ML Certification Whether you’re an experienced machine learning engineer or looking to elevate your expertise in Google Cloud's ML offerings, this book is a valuable companion, guiding you through the intricacies of machine learning in Google Cloud and preparing you for the Professional Machine Learning Engineer certification. Elevate Your Machine Learning Journey This guide is more than a pathway to certification; it's a deep dive into the practical and innovative aspects of machine learning in the Google Cloud environment, designed to equip you with the skills and knowledge for a thriving career in this dynamic field. Begin Your Machine Learning Adventure Start your journey to becoming a certified Google Professional Machine Learning Engineer. This guide is not just about passing an exam; it's about unlocking new opportunities and frontiers in the exciting world of machine learning on Google Cloud. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com

Big Data on Kubernetes

Download Big Data on Kubernetes PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1835468993
Total Pages : 297 pages
Book Rating : 4.8/5 (354 download)

DOWNLOAD NOW!


Book Synopsis Big Data on Kubernetes by : Neylson Crepalde

Download or read book Big Data on Kubernetes written by Neylson Crepalde and published by Packt Publishing Ltd. This book was released on 2024-07-19 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain hands-on experience in building efficient and scalable big data architecture on Kubernetes, utilizing leading technologies such as Spark, Airflow, Kafka, and Trino Key Features Leverage Kubernetes in a cloud environment to integrate seamlessly with a variety of tools Explore best practices for optimizing the performance of big data pipelines Build end-to-end data pipelines and discover real-world use cases using popular tools like Spark, Airflow, and Kafka Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionIn today's data-driven world, organizations across different sectors need scalable and efficient solutions for processing large volumes of data. Kubernetes offers an open-source and cost-effective platform for deploying and managing big data tools and workloads, ensuring optimal resource utilization and minimizing operational overhead. If you want to master the art of building and deploying big data solutions using Kubernetes, then this book is for you. Written by an experienced data specialist, Big Data on Kubernetes takes you through the entire process of developing scalable and resilient data pipelines, with a focus on practical implementation. Starting with the basics, you’ll progress toward learning how to install Docker and run your first containerized applications. You’ll then explore Kubernetes architecture and understand its core components. This knowledge will pave the way for exploring a variety of essential tools for big data processing such as Apache Spark and Apache Airflow. You’ll also learn how to install and configure these tools on Kubernetes clusters. Throughout the book, you’ll gain hands-on experience building a complete big data stack on Kubernetes. By the end of this Kubernetes book, you’ll be equipped with the skills and knowledge you need to tackle real-world big data challenges with confidence.What you will learn Install and use Docker to run containers and build concise images Gain a deep understanding of Kubernetes architecture and its components Deploy and manage Kubernetes clusters on different cloud platforms Implement and manage data pipelines using Apache Spark and Apache Airflow Deploy and configure Apache Kafka for real-time data ingestion and processing Build and orchestrate a complete big data pipeline using open-source tools Deploy Generative AI applications on a Kubernetes-based architecture Who this book is for If you’re a data engineer, BI analyst, data team leader, data architect, or tech manager with a basic understanding of big data technologies, then this big data book is for you. Familiarity with the basics of Python programming, SQL queries, and YAML is required to understand the topics discussed in this book.

Building Cloud Data Platforms Solutions

Download Building Cloud Data Platforms Solutions PDF Online Free

Author :
Publisher : Anouar BEN ZAHRA
ISBN 13 :
Total Pages : 339 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Building Cloud Data Platforms Solutions by : Anouar BEN ZAHRA

Download or read book Building Cloud Data Platforms Solutions written by Anouar BEN ZAHRA and published by Anouar BEN ZAHRA. This book was released on with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Building Cloud Data Platforms Solutions: An End-to-End Guide for Designing, Implementing, and Managing Robust Data Solutions in the Cloud" comprehensively covers a wide range of topics related to building data platforms in the cloud. This book provides a deep exploration of the essential concepts, strategies, and best practices involved in designing, implementing, and managing end-to-end data solutions. The book begins by introducing the fundamental principles and benefits of cloud computing, with a specific focus on its impact on data management and analytics. It covers various cloud services and architectures, enabling readers to understand the foundation upon which cloud data platforms are built. Next, the book dives into key considerations for building cloud data solutions, aligning business needs with cloud data strategies, and ensuring scalability, security, and compliance. It explores the process of data ingestion, discussing various techniques for acquiring and ingesting data from different sources into the cloud platform. The book then delves into data storage and management in the cloud. It covers different storage options, such as data lakes and data warehouses, and discusses strategies for organizing and optimizing data storage to facilitate efficient data processing and analytics. It also addresses data governance, data quality, and data integration techniques to ensure data integrity and consistency across the platform. A significant portion of the book is dedicated to data processing and analytics in the cloud. It explores modern data processing frameworks and technologies, such as Apache Spark and serverless computing, and provides practical guidance on implementing scalable and efficient data processing pipelines. The book also covers advanced analytics techniques, including machine learning and AI, and demonstrates how these can be integrated into the data platform to unlock valuable insights. Furthermore, the book addresses an aspects of data platform monitoring, security, and performance optimization. It explores techniques for monitoring data pipelines, ensuring data security, and optimizing performance to meet the demands of real-time data processing and analytics. Throughout the book, real-world examples, case studies, and best practices are provided to illustrate the concepts discussed. This helps readers apply the knowledge gained to their own data platform projects.

Data Science on AWS

Download Data Science on AWS PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492079367
Total Pages : 524 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Science on AWS by : Chris Fregly

Download or read book Data Science on AWS written by Chris Fregly and published by "O'Reilly Media, Inc.". This book was released on 2021-04-07 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more

AWS for Solutions Architects

Download AWS for Solutions Architects PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1803244828
Total Pages : 693 pages
Book Rating : 4.8/5 (32 download)

DOWNLOAD NOW!


Book Synopsis AWS for Solutions Architects by : Saurabh Shrivastava

Download or read book AWS for Solutions Architects written by Saurabh Shrivastava and published by Packt Publishing Ltd. This book was released on 2023-04-28 with total page 693 pages. Available in PDF, EPUB and Kindle. Book excerpt: Become a master Solutions Architect with this comprehensive guide, featuring cloud design patterns and real-world solutions for building scalable, secure, and highly available systems Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Gain expertise in automating, networking, migrating, and adopting cloud technologies using AWS Use streaming analytics, big data, AI/ML, IoT, quantum computing, and blockchain to transform your business Upskill yourself as an AWS solutions architect and explore details of the new AWS certification Book Description Are you excited to harness the power of AWS and unlock endless possibilities for your business? Look no further than the second edition of AWS for Solutions Architects! Packed with all-new content, this book is a must-have guide for anyone looking to build scalable cloud solutions and drive digital transformation using AWS. This updated edition offers in-depth guidance for building cloud solutions using AWS. It provides detailed information on AWS well-architected design pillars and cloud-native design patterns. You'll learn about networking in AWS, big data and streaming data processing, CloudOps, and emerging technologies such as machine learning, IoT, and blockchain. Additionally, the book includes new sections on storage in AWS, containers with ECS and EKS, and data lake patterns, providing you with valuable insights into designing industry-standard AWS architectures that meet your organization's technological and business requirements. Whether you're an experienced solutions architect or just getting started with AWS, this book has everything you need to confidently build cloud-native workloads and enterprise solutions. What you will learn Optimize your Cloud Workload using the AWS Well-Architected Framework Learn methods to migrate your workload using the AWS Cloud Adoption Framework Apply cloud automation at various layers of application workload to increase efficiency Build a landing zone in AWS and hybrid cloud setups with deep networking techniques Select reference architectures for business scenarios, like data lakes, containers, and serverless apps Apply emerging technologies in your architecture, including AI/ML, IoT and blockchain Who this book is for This book is for application and enterprise architects, developers, and operations engineers who want to become well versed with AWS architectural patterns, best practices, and advanced techniques to build scalable, secure, highly available, highly tolerant, and cost-effective solutions in the cloud. Existing AWS users are bound to learn the most, but it will also help those curious about how leveraging AWS can benefit their organization. Prior knowledge of any computing language is not needed, and there's little to no code. Prior experience in software architecture design will prove helpful.

Simplify Big Data Analytics with Amazon EMR

Download Simplify Big Data Analytics with Amazon EMR PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 180107772X
Total Pages : 430 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Simplify Big Data Analytics with Amazon EMR by : Sakti Mishra

Download or read book Simplify Big Data Analytics with Amazon EMR written by Sakti Mishra and published by Packt Publishing Ltd. This book was released on 2022-03-25 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design scalable big data solutions using Hadoop, Spark, and AWS cloud native services Key FeaturesBuild data pipelines that require distributed processing capabilities on a large volume of dataDiscover the security features of EMR such as data protection and granular permission managementExplore best practices and optimization techniques for building data analytics solutions in Amazon EMRBook Description Amazon EMR, formerly Amazon Elastic MapReduce, provides a managed Hadoop cluster in Amazon Web Services (AWS) that you can use to implement batch or streaming data pipelines. By gaining expertise in Amazon EMR, you can design and implement data analytics pipelines with persistent or transient EMR clusters in AWS. This book is a practical guide to Amazon EMR for building data pipelines. You'll start by understanding the Amazon EMR architecture, cluster nodes, features, and deployment options, along with their pricing. Next, the book covers the various big data applications that EMR supports. You'll then focus on the advanced configuration of EMR applications, hardware, networking, security, troubleshooting, logging, and the different SDKs and APIs it provides. Later chapters will show you how to implement common Amazon EMR use cases, including batch ETL with Spark, real-time streaming with Spark Streaming, and handling UPSERT in S3 Data Lake with Apache Hudi. Finally, you'll orchestrate your EMR jobs and strategize on-premises Hadoop cluster migration to EMR. In addition to this, you'll explore best practices and cost optimization techniques while implementing your data analytics pipeline in EMR. By the end of this book, you'll be able to build and deploy Hadoop- or Spark-based apps on Amazon EMR and also migrate your existing on-premises Hadoop workloads to AWS. What you will learnExplore Amazon EMR features, architecture, Hadoop interfaces, and EMR StudioConfigure, deploy, and orchestrate Hadoop or Spark jobs in productionImplement the security, data governance, and monitoring capabilities of EMRBuild applications for batch and real-time streaming data analytics solutionsPerform interactive development with a persistent EMR cluster and NotebookOrchestrate an EMR Spark job using AWS Step Functions and Apache AirflowWho this book is for This book is for data engineers, data analysts, data scientists, and solution architects who are interested in building data analytics solutions with the Hadoop ecosystem services and Amazon EMR. Prior experience in either Python programming, Scala, or the Java programming language and a basic understanding of Hadoop and AWS will help you make the most out of this book.

Databricks ML in Action

Download Databricks ML in Action PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1800564007
Total Pages : 280 pages
Book Rating : 4.8/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Databricks ML in Action by : Stephanie Rivera

Download or read book Databricks ML in Action written by Stephanie Rivera and published by Packt Publishing Ltd. This book was released on 2024-05-17 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get to grips with autogenerating code, deploying ML algorithms, and leveraging various ML lifecycle features on the Databricks Platform, guided by best practices and reusable code for you to try, alter, and build on Key Features Build machine learning solutions faster than peers only using documentation Enhance or refine your expertise with tribal knowledge and concise explanations Follow along with code projects provided in GitHub to accelerate your projects Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionDiscover what makes the Databricks Data Intelligence Platform the go-to choice for top-tier machine learning solutions. Written by a team of industry experts at Databricks with decades of combined experience in big data, machine learning, and data science, Databricks ML in Action presents cloud-agnostic, end-to-end examples with hands-on illustrations of executing data science, machine learning, and generative AI projects on the Databricks Platform. You’ll develop expertise in Databricks' managed MLflow, Vector Search, AutoML, Unity Catalog, and Model Serving as you learn to apply them practically in everyday workflows. This Databricks book not only offers detailed code explanations but also facilitates seamless code importation for practical use. You’ll discover how to leverage the open-source Databricks platform to enhance learning, boost skills, and elevate productivity with supplemental resources. By the end of this book, you'll have mastered the use of Databricks for data science, machine learning, and generative AI, enabling you to deliver outstanding data products.What you will learn Set up a workspace for a data team planning to perform data science Monitor data quality and detect drift Use autogenerated code for ML modeling and data exploration Operationalize ML with feature engineering client, AutoML, VectorSearch, Delta Live Tables, AutoLoader, and Workflows Integrate open-source and third-party applications, such as OpenAI's ChatGPT, into your AI projects Communicate insights through Databricks SQL dashboards and Delta Sharing Explore data and models through the Databricks marketplace Who this book is for This book is for machine learning engineers, data scientists, and technical managers seeking hands-on expertise in implementing and leveraging the Databricks Data Intelligence Platform and its Lakehouse architecture to create data products.

Google Certification Guide - Google Associate Cloud Engineer

Download Google Certification Guide - Google Associate Cloud Engineer PDF Online Free

Author :
Publisher : Cybellium Ltd
ISBN 13 :
Total Pages : 176 pages
Book Rating : 4.8/5 (712 download)

DOWNLOAD NOW!


Book Synopsis Google Certification Guide - Google Associate Cloud Engineer by : Cybellium Ltd

Download or read book Google Certification Guide - Google Associate Cloud Engineer written by Cybellium Ltd and published by Cybellium Ltd. This book was released on with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Google Certification Guide - Google Associate Cloud Engineer Embark on Your Cloud Engineering Journey with Google Cloud Begin your path to becoming a Google Associate Cloud Engineer with this comprehensive guide. Designed to provide a clear and concise pathway for professionals and enthusiasts alike, this book demystifies the complexities of Google Cloud, preparing you to excel in the certification exam and beyond. What’s Inside: Fundamental Google Cloud Concepts: Gain a solid understanding of core Google Cloud services, from computing and storage to networking and security. Practical Application: Learn through real-world scenarios and hands-on examples that illustrate effective use of Google Cloud services in diverse environments. Focused Exam Preparation: Detailed insights into the structure and content of the Google Associate Cloud Engineer certification exam, enhanced with practice questions and study tips. Current and Comprehensive: Stay up-to-date with the latest Google Cloud features and industry best practices, ensuring your knowledge is relevant in today’s cloud landscape. Expertly Crafted by a Cloud Professional Written by a seasoned cloud engineer with extensive experience in Google Cloud technologies, this guide blends practical knowledge with insightful tips and tricks, offering a well-rounded approach to cloud engineering. Your Comprehensive Guide to Google Cloud Certification Whether you're starting your career in cloud computing or an experienced professional seeking to validate your Google Cloud skills, this book is an invaluable resource, guiding you through the nuances of Google Cloud and preparing you for the Associate Cloud Engineer exam. Elevate Your Cloud Engineering Skills Move beyond theoretical knowledge and dive into the practical aspects of Google Cloud. This guide is more than a certification prep book; it's your roadmap to achieving proficiency in Google Cloud engineering. Begin Your Google Cloud Journey Step into the role of a Google Associate Cloud Engineer with confidence. This guide is your first step toward mastering Google Cloud technologies and forging a successful career in the dynamic world of cloud computing. © 2023 Cybellium Ltd. All rights reserved. www.cybellium.com

The Definitive Guide to Data Integration

Download The Definitive Guide to Data Integration PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1837634777
Total Pages : 490 pages
Book Rating : 4.8/5 (376 download)

DOWNLOAD NOW!


Book Synopsis The Definitive Guide to Data Integration by : Pierre-Yves BONNEFOY

Download or read book The Definitive Guide to Data Integration written by Pierre-Yves BONNEFOY and published by Packt Publishing Ltd. This book was released on 2024-03-29 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the essentials of data integration with this comprehensive guide, covering everything from sources to solutions, and discover the key to making the most of your data stack Key Features Learn how to leverage modern data stack tools and technologies for effective data integration Design and implement data integration solutions with practical advice and best practices Focus on modern technologies such as cloud-based architectures, real-time data processing, and open-source tools and technologies Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe Definitive Guide to Data Integration is an indispensable resource for navigating the complexities of modern data integration. Focusing on the latest tools, techniques, and best practices, this guide helps you master data integration and unleash the full potential of your data. This comprehensive guide begins by examining the challenges and key concepts of data integration, such as managing huge volumes of data and dealing with the different data types. You’ll gain a deep understanding of the modern data stack and its architecture, as well as the pivotal role of open-source technologies in shaping the data landscape. Delving into the layers of the modern data stack, you’ll cover data sources, types, storage, integration techniques, transformation, and processing. The book also offers insights into data exposition and APIs, ingestion and storage strategies, data preparation and analysis, workflow management, monitoring, data quality, and governance. Packed with practical use cases, real-world examples, and a glimpse into the future of data integration, The Definitive Guide to Data Integration is an essential resource for data eclectics. By the end of this book, you’ll have the gained the knowledge and skills needed to optimize your data usage and excel in the ever-evolving world of data.What you will learn Discover the evolving architecture and technologies shaping data integration Process large data volumes efficiently with data warehousing Tackle the complexities of integrating large datasets from diverse sources Harness the power of data warehousing for efficient data storage and processing Design and optimize effective data integration solutions Explore data governance principles and compliance requirements Who this book is for This book is perfect for data engineers, data architects, data analysts, and IT professionals looking to gain a comprehensive understanding of data integration in the modern era. Whether you’re a beginner or an experienced professional enhancing your knowledge of the modern data stack, this definitive guide will help you navigate the data integration landscape.

Machine Learning Engineering with Python

Download Machine Learning Engineering with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 180107710X
Total Pages : 277 pages
Book Rating : 4.8/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning Engineering with Python by : Andrew P. McMahon

Download or read book Machine Learning Engineering with Python written by Andrew P. McMahon and published by Packt Publishing Ltd. This book was released on 2021-11-05 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Supercharge the value of your machine learning models by building scalable and robust solutions that can serve them in production environments Key Features Explore hyperparameter optimization and model management tools Learn object-oriented programming and functional programming in Python to build your own ML libraries and packages Explore key ML engineering patterns like microservices and the Extract Transform Machine Learn (ETML) pattern with use cases Book DescriptionMachine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.What you will learn Find out what an effective ML engineering process looks like Uncover options for automating training and deployment and learn how to use them Discover how to build your own wrapper libraries for encapsulating your data science and machine learning logic and solutions Understand what aspects of software engineering you can bring to machine learning Gain insights into adapting software engineering for machine learning using appropriate cloud technologies Perform hyperparameter tuning in a relatively automated way Who this book is for This book is for machine learning engineers, data scientists, and software developers who want to build robust software solutions with machine learning components. If you're someone who manages or wants to understand the production life cycle of these systems, you'll find this book useful. Intermediate-level knowledge of Python is necessary.