Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Analyticity And Sparsity In Uncertainty Quantification For Pdes With Gaussian Random Field Inputs
Download Analyticity And Sparsity In Uncertainty Quantification For Pdes With Gaussian Random Field Inputs full books in PDF, epub, and Kindle. Read online Analyticity And Sparsity In Uncertainty Quantification For Pdes With Gaussian Random Field Inputs ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs by : Dinh Dũng
Download or read book Analyticity and Sparsity in Uncertainty Quantification for PDEs with Gaussian Random Field Inputs written by Dinh Dũng and published by Springer Nature. This book was released on 2023-11-16 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book develops the mathematical and numerical analysis of linear, elliptic and parabolic partial differential equations (PDEs) with coefficients whose logarithms are modelled as Gaussian random fields (GRFs), in polygonal and polyhedral physical domains. Both, forward and Bayesian inverse PDE problems subject to GRF priors are considered. Adopting a pathwise, affine-parametric representation of the GRFs, turns the random PDEs into equivalent, countably-parametric, deterministic PDEs, with nonuniform ellipticity constants. A detailed sparsity analysis of Wiener-Hermite polynomial chaos expansions of the corresponding parametric PDE solution families by analytic continuation into the complex domain is developed, in corner- and edge-weighted function spaces on the physical domain. The presented Algorithms and results are relevant for the mathematical analysis of many approximation methods for PDEs with GRF inputs, such as model order reduction, neural network and tensor-formatted surrogates of parametric solution families. They are expected to impact computational uncertainty quantification subject to GRF models of uncertainty in PDEs, and are of interest for researchers and graduate students in both, applied and computational mathematics, as well as in computational science and engineering.
Book Synopsis Handbook of Uncertainty Quantification by : Roger Ghanem
Download or read book Handbook of Uncertainty Quantification written by Roger Ghanem and published by Springer. This book was released on 2016-05-08 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.
Book Synopsis An Introduction to Computational Stochastic PDEs by : Gabriel J. Lord
Download or read book An Introduction to Computational Stochastic PDEs written by Gabriel J. Lord and published by Cambridge University Press. This book was released on 2014-08-11 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.
Book Synopsis Bayesian Approach to Inverse Problems by : Jérôme Idier
Download or read book Bayesian Approach to Inverse Problems written by Jérôme Idier and published by John Wiley & Sons. This book was released on 2013-03-01 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many scientific, medical or engineering problems raise the issue of recovering some physical quantities from indirect measurements; for instance, detecting or quantifying flaws or cracks within a material from acoustic or electromagnetic measurements at its surface is an essential problem of non-destructive evaluation. The concept of inverse problems precisely originates from the idea of inverting the laws of physics to recover a quantity of interest from measurable data. Unfortunately, most inverse problems are ill-posed, which means that precise and stable solutions are not easy to devise. Regularization is the key concept to solve inverse problems. The goal of this book is to deal with inverse problems and regularized solutions using the Bayesian statistical tools, with a particular view to signal and image estimation. The first three chapters bring the theoretical notions that make it possible to cast inverse problems within a mathematical framework. The next three chapters address the fundamental inverse problem of deconvolution in a comprehensive manner. Chapters 7 and 8 deal with advanced statistical questions linked to image estimation. In the last five chapters, the main tools introduced in the previous chapters are put into a practical context in important applicative areas, such as astronomy or medical imaging.
Book Synopsis Active Subspaces by : Paul G. Constantine
Download or read book Active Subspaces written by Paul G. Constantine and published by SIAM. This book was released on 2015-03-17 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scientists and engineers use computer simulations to study relationships between a model's input parameters and its outputs. However, thorough parameter studies are challenging, if not impossible, when the simulation is expensive and the model has several inputs. To enable studies in these instances, the engineer may attempt to reduce the dimension of the model's input parameter space. Active subspaces are an emerging set of dimension reduction tools that identify important directions in the parameter space. This book describes techniques for discovering a model's active subspace and proposes methods for exploiting the reduced dimension to enable otherwise infeasible parameter studies. Readers will find new ideas for dimension reduction, easy-to-implement algorithms, and several examples of active subspaces in action.
Book Synopsis Uncertainty Quantification in Multiscale Materials Modeling by : Yan Wang
Download or read book Uncertainty Quantification in Multiscale Materials Modeling written by Yan Wang and published by Woodhead Publishing. This book was released on 2020-03-12 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.
Book Synopsis Certified Reduced Basis Methods for Parametrized Partial Differential Equations by : Jan S Hesthaven
Download or read book Certified Reduced Basis Methods for Parametrized Partial Differential Equations written by Jan S Hesthaven and published by Springer. This book was released on 2015-08-20 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough introduction to the mathematical and algorithmic aspects of certified reduced basis methods for parametrized partial differential equations. Central aspects ranging from model construction, error estimation and computational efficiency to empirical interpolation methods are discussed in detail for coercive problems. More advanced aspects associated with time-dependent problems, non-compliant and non-coercive problems and applications with geometric variation are also discussed as examples.
Book Synopsis Introduction to Uncertainty Quantification by : T.J. Sullivan
Download or read book Introduction to Uncertainty Quantification written by T.J. Sullivan and published by Springer. This book was released on 2015-12-14 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.
Book Synopsis Uncertainty Quantification for Hyperbolic and Kinetic Equations by : Shi Jin
Download or read book Uncertainty Quantification for Hyperbolic and Kinetic Equations written by Shi Jin and published by Springer. This book was released on 2018-03-20 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.
Book Synopsis Uncertainty Quantification in Computational Fluid Dynamics by : Hester Bijl
Download or read book Uncertainty Quantification in Computational Fluid Dynamics written by Hester Bijl and published by Springer Science & Business Media. This book was released on 2013-09-20 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid flows are characterized by uncertain inputs such as random initial data, material and flux coefficients, and boundary conditions. The current volume addresses the pertinent issue of efficiently computing the flow uncertainty, given this initial randomness. It collects seven original review articles that cover improved versions of the Monte Carlo method (the so-called multi-level Monte Carlo method (MLMC)), moment-based stochastic Galerkin methods and modified versions of the stochastic collocation methods that use adaptive stencil selection of the ENO-WENO type in both physical and stochastic space. The methods are also complemented by concrete applications such as flows around aerofoils and rockets, problems of aeroelasticity (fluid-structure interactions), and shallow water flows for propagating water waves. The wealth of numerical examples provide evidence on the suitability of each proposed method as well as comparisons of different approaches.
Book Synopsis Spectral Methods for Uncertainty Quantification by : Olivier Le Maitre
Download or read book Spectral Methods for Uncertainty Quantification written by Olivier Le Maitre and published by Springer Science & Business Media. This book was released on 2010-03-11 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the application of spectral methods to problems of uncertainty propagation and quanti?cation in model-based computations. It speci?cally focuses on computational and algorithmic features of these methods which are most useful in dealing with models based on partial differential equations, with special att- tion to models arising in simulations of ?uid ?ows. Implementations are illustrated through applications to elementary problems, as well as more elaborate examples selected from the authors’ interests in incompressible vortex-dominated ?ows and compressible ?ows at low Mach numbers. Spectral stochastic methods are probabilistic in nature, and are consequently rooted in the rich mathematical foundation associated with probability and measure spaces. Despite the authors’ fascination with this foundation, the discussion only - ludes to those theoretical aspects needed to set the stage for subsequent applications. The book is authored by practitioners, and is primarily intended for researchers or graduate students in computational mathematics, physics, or ?uid dynamics. The book assumes familiarity with elementary methods for the numerical solution of time-dependent, partial differential equations; prior experience with spectral me- ods is naturally helpful though not essential. Full appreciation of elaborate examples in computational ?uid dynamics (CFD) would require familiarity with key, and in some cases delicate, features of the associated numerical methods. Besides these shortcomings, our aim is to treat algorithmic and computational aspects of spectral stochastic methods with details suf?cient to address and reconstruct all but those highly elaborate examples.
Book Synopsis Progress in Partial Differential Equations by : Catherine Bandle
Download or read book Progress in Partial Differential Equations written by Catherine Bandle and published by Chapman & Hall/CRC. This book was released on 1992 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Dynamic Mode Decomposition by : J. Nathan Kutz
Download or read book Dynamic Mode Decomposition written by J. Nathan Kutz and published by SIAM. This book was released on 2016-11-23 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-driven dynamical systems is a burgeoning field?it connects how measurements of nonlinear dynamical systems and/or complex systems can be used with well-established methods in dynamical systems theory. This is a critically important new direction because the governing equations of many problems under consideration by practitioners in various scientific fields are not typically known. Thus, using data alone to help derive, in an optimal sense, the best dynamical system representation of a given application allows for important new insights. The recently developed dynamic mode decomposition (DMD) is an innovative tool for integrating data with dynamical systems theory. The DMD has deep connections with traditional dynamical systems theory and many recent innovations in compressed sensing and machine learning. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, the first book to address the DMD algorithm, presents a pedagogical and comprehensive approach to all aspects of DMD currently developed or under development; blends theoretical development, example codes, and applications to showcase the theory and its many innovations and uses; highlights the numerous innovations around the DMD algorithm and demonstrates its efficacy using example problems from engineering and the physical and biological sciences; and provides extensive MATLAB code, data for intuitive examples of key methods, and graphical presentations.
Book Synopsis Control Theory and Systems Biology by : Pablo A. Iglesias
Download or read book Control Theory and Systems Biology written by Pablo A. Iglesias and published by MIT Press. This book was released on 2010 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of how engineering techniques from control and systems theory can be used to help biologists understand the behavior of cellular systems.
Book Synopsis Gaussian Processes for Machine Learning by : Carl Edward Rasmussen
Download or read book Gaussian Processes for Machine Learning written by Carl Edward Rasmussen and published by MIT Press. This book was released on 2005-11-23 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.
Book Synopsis Numerical Computations with GPUs by : Volodymyr Kindratenko
Download or read book Numerical Computations with GPUs written by Volodymyr Kindratenko and published by Springer. This book was released on 2014-07-03 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together research on numerical methods adapted for Graphics Processing Units (GPUs). It explains recent efforts to adapt classic numerical methods, including solution of linear equations and FFT, for massively parallel GPU architectures. This volume consolidates recent research and adaptations, covering widely used methods that are at the core of many scientific and engineering computations. Each chapter is written by authors working on a specific group of methods; these leading experts provide mathematical background, parallel algorithms and implementation details leading to reusable, adaptable and scalable code fragments. This book also serves as a GPU implementation manual for many numerical algorithms, sharing tips on GPUs that can increase application efficiency. The valuable insights into parallelization strategies for GPUs are supplemented by ready-to-use code fragments. Numerical Computations with GPUs targets professionals and researchers working in high performance computing and GPU programming. Advanced-level students focused on computer science and mathematics will also find this book useful as secondary text book or reference.
Book Synopsis Foundations of Computational Mathematics by : Ronald A. DeVore
Download or read book Foundations of Computational Mathematics written by Ronald A. DeVore and published by Cambridge University Press. This book was released on 2001-05-17 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collection of papers by leading researchers in computational mathematics, suitable for graduate students and researchers.