New Trends on Analysis and Geometry in Metric Spaces

Download New Trends on Analysis and Geometry in Metric Spaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030841413
Total Pages : 312 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis New Trends on Analysis and Geometry in Metric Spaces by : Fabrice Baudoin

Download or read book New Trends on Analysis and Geometry in Metric Spaces written by Fabrice Baudoin and published by Springer Nature. This book was released on 2022-02-04 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.

Analysis and Geometry of Metric Measure Spaces

Download Analysis and Geometry of Metric Measure Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821894188
Total Pages : 241 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Analysis and Geometry of Metric Measure Spaces by : Galia Devora Dafni

Download or read book Analysis and Geometry of Metric Measure Spaces written by Galia Devora Dafni and published by American Mathematical Soc.. This book was released on 2013 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.

Lectures on Analysis on Metric Spaces

Download Lectures on Analysis on Metric Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780387951041
Total Pages : 158 pages
Book Rating : 4.9/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Analysis on Metric Spaces by : Juha Heinonen

Download or read book Lectures on Analysis on Metric Spaces written by Juha Heinonen and published by Springer Science & Business Media. This book was released on 2001 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.

Sobolev Spaces on Metric Measure Spaces

Download Sobolev Spaces on Metric Measure Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107092345
Total Pages : 447 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces on Metric Measure Spaces by : Juha Heinonen

Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.

Metric In Measure Spaces

Download Metric In Measure Spaces PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813200421
Total Pages : 308 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Metric In Measure Spaces by : James J Yeh

Download or read book Metric In Measure Spaces written by James J Yeh and published by World Scientific. This book was released on 2019-11-18 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Measure and metric are two fundamental concepts in measuring the size of a mathematical object. Yet there has been no systematic investigation of this relation. The book closes this gap.

An Invitation to Alexandrov Geometry

Download An Invitation to Alexandrov Geometry PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030053121
Total Pages : 95 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis An Invitation to Alexandrov Geometry by : Stephanie Alexander

Download or read book An Invitation to Alexandrov Geometry written by Stephanie Alexander and published by Springer. This book was released on 2019-05-08 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed toward graduate students and research mathematicians, with minimal prerequisites this book provides a fresh take on Alexandrov geometry and explains the importance of CAT(0) geometry in geometric group theory. Beginning with an overview of fundamentals, definitions, and conventions, this book quickly moves forward to discuss the Reshetnyak gluing theorem and applies it to the billiards problems. The Hadamard–Cartan globalization theorem is explored and applied to construct exotic aspherical manifolds.

Metric Spaces and Complex Analysis

Download Metric Spaces and Complex Analysis PDF Online Free

Author :
Publisher : New Age International
ISBN 13 : 8122422608
Total Pages : 27 pages
Book Rating : 4.1/5 (224 download)

DOWNLOAD NOW!


Book Synopsis Metric Spaces and Complex Analysis by : Amar Kumar Banerjee

Download or read book Metric Spaces and Complex Analysis written by Amar Kumar Banerjee and published by New Age International. This book was released on 2008 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Measure Theory in Non-Smooth Spaces

Download Measure Theory in Non-Smooth Spaces PDF Online Free

Author :
Publisher : De Gruyter Open
ISBN 13 : 9783110550825
Total Pages : 246 pages
Book Rating : 4.5/5 (58 download)

DOWNLOAD NOW!


Book Synopsis Measure Theory in Non-Smooth Spaces by : Nicola Gigli

Download or read book Measure Theory in Non-Smooth Spaces written by Nicola Gigli and published by De Gruyter Open. This book was released on 2017-08-20 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis in singular spaces is becoming an increasingly important area of research, with motivation coming from the calculus of variations, PDEs, geometric analysis, metric geometry and probability theory, just to mention a few areas. In all these fields, the role of measure theory is crucial and an appropriate understanding of the interaction between the relevant measure-theoretic framework and the objects under investigation is important to a successful research. The aim of this book, which gathers contributions from leading specialists with different backgrounds, is that of creating a collection of various aspects of measure theory occurring in recent research with the hope of increasing interactions between different fields. List of contributors: Luigi Ambrosio, Vladimir I. Bogachev, Fabio Cavalletti, Guido De Philippis, Shouhei Honda, Tom Leinster, Christian L�onard, Andrea Marchese, Mark W. Meckes, Filip Rindler, Nageswari Shanmugalingam, Takashi Shioya, and Christina Sormani.

Gradient Flows

Download Gradient Flows PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 376438722X
Total Pages : 333 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Gradient Flows by : Luigi Ambrosio

Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.

A Differentiable Structure for Metric Measure Spaces

Download A Differentiable Structure for Metric Measure Spaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 182 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis A Differentiable Structure for Metric Measure Spaces by : Stephen Keith

Download or read book A Differentiable Structure for Metric Measure Spaces written by Stephen Keith and published by . This book was released on 2002 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Morrey Spaces

Download Morrey Spaces PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000064077
Total Pages : 427 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis Morrey Spaces by : Yoshihiro Sawano

Download or read book Morrey Spaces written by Yoshihiro Sawano and published by CRC Press. This book was released on 2020-09-16 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Morrey spaces were introduced by Charles Morrey to investigate the local behaviour of solutions to second order elliptic partial differential equations. The technique is very useful in many areas in mathematics, in particular in harmonic analysis, potential theory, partial differential equations and mathematical physics. Across two volumes, the authors of Morrey Spaces: Introduction and Applications to Integral Operators and PDE’s discuss the current state of art and perspectives of developments of this theory of Morrey spaces, with the emphasis in Volume II focused mainly generalizations and interpolation of Morrey spaces. Features Provides a ‘from-scratch’ overview of the topic readable by anyone with an understanding of integration theory Suitable for graduate students, masters course students, and researchers in PDE's or Geometry Replete with exercises and examples to aid the reader’s understanding

Measure, Topology, and Fractal Geometry

Download Measure, Topology, and Fractal Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475741340
Total Pages : 252 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Measure, Topology, and Fractal Geometry by : Gerald A. Edgar

Download or read book Measure, Topology, and Fractal Geometry written by Gerald A. Edgar and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable text The Fractal Geometry of Nature, there has been a deluge of books, articles and television programmes about the beautiful mathematical objects, drawn by computers using recursive or iterative algorithms, which Mandelbrot christened fractals. Gerald Edgar's book is a significant addition to this deluge. Based on a course given to talented high- school students at Ohio University in 1988, it is, in fact, an advanced undergraduate textbook about the mathematics of fractal geometry, treating such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. However, the book also contains many good illustrations of fractals (including 16 color plates), together with Logo programs which were used to generate them. ... Here then, at last, is an answer to the question on the lips of so many: 'What exactly is a fractal?' I do not expect many of this book's readers to achieve a mature understanding of this answer to the question, but anyone interested in finding out about the mathematics of fractal geometry could not choose a better place to start looking." #Mathematics Teaching#1

A Course in Metric Geometry

Download A Course in Metric Geometry PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470468530
Total Pages : 415 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis A Course in Metric Geometry by : Dmitri Burago

Download or read book A Course in Metric Geometry written by Dmitri Burago and published by American Mathematical Society. This book was released on 2022-01-27 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Metric geometry” is an approach to geometry based on the notion of length on a topological space. This approach experienced a very fast development in the last few decades and penetrated into many other mathematical disciplines, such as group theory, dynamical systems, and partial differential equations. The objective of this graduate textbook is twofold: to give a detailed exposition of basic notions and techniques used in the theory of length spaces, and, more generally, to offer an elementary introduction into a broad variety of geometrical topics related to the notion of distance, including Riemannian and Carnot-Carathéodory metrics, the hyperbolic plane, distance-volume inequalities, asymptotic geometry (large scale, coarse), Gromov hyperbolic spaces, convergence of metric spaces, and Alexandrov spaces (non-positively and non-negatively curved spaces). The authors tend to work with “easy-to-touch” mathematical objects using “easy-to-visualize” methods. The authors set a challenging goal of making the core parts of the book accessible to first-year graduate students. Most new concepts and methods are introduced and illustrated using simplest cases and avoiding technicalities. The book contains many exercises, which form a vital part of the exposition.

Metric Structures for Riemannian and Non-Riemannian Spaces

Download Metric Structures for Riemannian and Non-Riemannian Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817645837
Total Pages : 594 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Metric Structures for Riemannian and Non-Riemannian Spaces by : Mikhail Gromov

Download or read book Metric Structures for Riemannian and Non-Riemannian Spaces written by Mikhail Gromov and published by Springer Science & Business Media. This book was released on 2007-06-25 with total page 594 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an English translation of the famous "Green Book" by Lafontaine and Pansu (1979). It has been enriched and expanded with new material to reflect recent progress. Additionally, four appendices, by Gromov on Levy's inequality, by Pansu on "quasiconvex" domains, by Katz on systoles of Riemannian manifolds, and by Semmes overviewing analysis on metric spaces with measures, as well as an extensive bibliography and index round out this unique and beautiful book.

An Introduction to Measure Theory

Download An Introduction to Measure Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470466406
Total Pages : 206 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Measure Theory by : Terence Tao

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Lectures on Nonsmooth Differential Geometry

Download Lectures on Nonsmooth Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030386139
Total Pages : 212 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Nonsmooth Differential Geometry by : Nicola Gigli

Download or read book Lectures on Nonsmooth Differential Geometry written by Nicola Gigli and published by Springer Nature. This book was released on 2020-02-10 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces – known as RCD spaces – satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of “infinitesimally Hilbertian” metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.

Analysis and Geometry of Markov Diffusion Operators

Download Analysis and Geometry of Markov Diffusion Operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3319002279
Total Pages : 555 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Analysis and Geometry of Markov Diffusion Operators by : Dominique Bakry

Download or read book Analysis and Geometry of Markov Diffusion Operators written by Dominique Bakry and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 555 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.