An Introductory Course in Lebesgue Spaces

Download An Introductory Course in Lebesgue Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319300342
Total Pages : 463 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis An Introductory Course in Lebesgue Spaces by : Rene Erlin Castillo

Download or read book An Introductory Course in Lebesgue Spaces written by Rene Erlin Castillo and published by Springer. This book was released on 2016-06-23 with total page 463 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted exclusively to Lebesgue spaces and their direct derived spaces. Unique in its sole dedication, this book explores Lebesgue spaces, distribution functions and nonincreasing rearrangement. Moreover, it also deals with weak, Lorentz and the more recent variable exponent and grand Lebesgue spaces with considerable detail to the proofs. The book also touches on basic harmonic analysis in the aforementioned spaces. An appendix is given at the end of the book giving it a self-contained character. This work is ideal for teachers, graduate students and researchers.

Variable Lebesgue Spaces

Download Variable Lebesgue Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3034805489
Total Pages : 316 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Variable Lebesgue Spaces by : David V. Cruz-Uribe

Download or read book Variable Lebesgue Spaces written by David V. Cruz-Uribe and published by Springer Science & Business Media. This book was released on 2013-02-12 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible introduction to the theory of variable Lebesgue spaces. These spaces generalize the classical Lebesgue spaces by replacing the constant exponent p with a variable exponent p(x). They were introduced in the early 1930s but have become the focus of renewed interest since the early 1990s because of their connection with the calculus of variations and partial differential equations with nonstandard growth conditions, and for their applications to problems in physics and image processing. The book begins with the development of the basic function space properties. It avoids a more abstract, functional analysis approach, instead emphasizing an hands-on approach that makes clear the similarities and differences between the variable and classical Lebesgue spaces. The subsequent chapters are devoted to harmonic analysis on variable Lebesgue spaces. The theory of the Hardy-Littlewood maximal operator is completely developed, and the connections between variable Lebesgue spaces and the weighted norm inequalities are introduced. The other important operators in harmonic analysis - singular integrals, Riesz potentials, and approximate identities - are treated using a powerful generalization of the Rubio de Francia theory of extrapolation from the theory of weighted norm inequalities. The final chapter applies the results from previous chapters to prove basic results about variable Sobolev spaces.​

A First Course in Sobolev Spaces

Download A First Course in Sobolev Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821847686
Total Pages : 626 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Sobolev Spaces by : Giovanni Leoni

Download or read book A First Course in Sobolev Spaces written by Giovanni Leoni and published by American Mathematical Soc.. This book was released on 2009 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.

An Introduction to Lebesgue Integration and Fourier Series

Download An Introduction to Lebesgue Integration and Fourier Series PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486137473
Total Pages : 194 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Lebesgue Integration and Fourier Series by : Howard J. Wilcox

Download or read book An Introduction to Lebesgue Integration and Fourier Series written by Howard J. Wilcox and published by Courier Corporation. This book was released on 2012-04-30 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book arose out of the authors' desire to present Lebesgue integration and Fourier series on an undergraduate level, since most undergraduate texts do not cover this material or do so in a cursory way. The result is a clear, concise, well-organized introduction to such topics as the Riemann integral, measurable sets, properties of measurable sets, measurable functions, the Lebesgue integral, convergence and the Lebesgue integral, pointwise convergence of Fourier series and other subjects. The authors not only cover these topics in a useful and thorough way, they have taken pains to motivate the student by keeping the goals of the theory always in sight, justifying each step of the development in terms of those goals. In addition, whenever possible, new concepts are related to concepts already in the student's repertoire. Finally, to enable readers to test their grasp of the material, the text is supplemented by numerous examples and exercises. Mathematics students as well as students of engineering and science will find here a superb treatment, carefully thought out and well presented , that is ideal for a one semester course. The only prerequisite is a basic knowledge of advanced calculus, including the notions of compactness, continuity, uniform convergence and Riemann integration.

Fundamentals of Measurable Dynamics

Download Fundamentals of Measurable Dynamics PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 :
Total Pages : 190 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Measurable Dynamics by : Daniel J. Rudolph

Download or read book Fundamentals of Measurable Dynamics written by Daniel J. Rudolph and published by Oxford University Press, USA. This book was released on 1990 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed to provide graduate students and other researchers in dynamical systems theory with an introduction to the ergodic theory of Lebesgue spaces. The author's aim is to present a technically complete account which offers an in-depth understanding of the techniques of the field, both classical and modern. Thus, the basic structure theorems of Lebesgue spaces are given in detail as well as complete accounts of the ergodic theory of a single transformation, ergodic theorems, mixing properties and entropy. Subsequent chapters extend the earlier material to the areas of joinings and representation theorems, in particular the theorems of Ornstein and Krieger. Prerequisites are a working knowledge of Lebesgue measure and the topology of the real line as might be gained from the first year of a graduate course. Many exercises and examples are included to illustrate and to further cement the reader's understanding of the material. The result is a text which will furnish the reader with a sound technical background from the foundations of the subject to some of its most recent developments.

A (Terse) Introduction to Lebesgue Integration

Download A (Terse) Introduction to Lebesgue Integration PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821848623
Total Pages : 219 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A (Terse) Introduction to Lebesgue Integration by : John M. Franks

Download or read book A (Terse) Introduction to Lebesgue Integration written by John M. Franks and published by American Mathematical Soc.. This book was released on 2009 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a student's first encounter with the concepts of measure theory and functional analysis. This book reflects the belief that difficult concepts should be introduced in their simplest and most concrete forms. It is suitable for an advanced undergraduate course or for the start of a graduate course.

A First Course in Functional Analysis

Download A First Course in Functional Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498771645
Total Pages : 203 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Functional Analysis by : Orr Moshe Shalit

Download or read book A First Course in Functional Analysis written by Orr Moshe Shalit and published by CRC Press. This book was released on 2017-03-16 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written as a textbook, A First Course in Functional Analysis is an introduction to basic functional analysis and operator theory, with an emphasis on Hilbert space methods. The aim of this book is to introduce the basic notions of functional analysis and operator theory without requiring the student to have taken a course in measure theory as a prerequisite. It is written and structured the way a course would be designed, with an emphasis on clarity and logical development alongside real applications in analysis. The background required for a student taking this course is minimal; basic linear algebra, calculus up to Riemann integration, and some acquaintance with topological and metric spaces.

An Introduction to Measure Theory

Download An Introduction to Measure Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470466406
Total Pages : 206 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Measure Theory by : Terence Tao

Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Lebesgue Integration on Euclidean Space

Download Lebesgue Integration on Euclidean Space PDF Online Free

Author :
Publisher : Jones & Bartlett Learning
ISBN 13 : 9780763717087
Total Pages : 626 pages
Book Rating : 4.7/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Lebesgue Integration on Euclidean Space by : Frank Jones

Download or read book Lebesgue Integration on Euclidean Space written by Frank Jones and published by Jones & Bartlett Learning. This book was released on 2001 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: "'Lebesgue Integration on Euclidean Space' contains a concrete, intuitive, and patient derivation of Lebesgue measure and integration on Rn. It contains many exercises that are incorporated throughout the text, enabling the reader to apply immediately the new ideas that have been presented" --

An Introduction to Banach Space Theory

Download An Introduction to Banach Space Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461206030
Total Pages : 613 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Banach Space Theory by : Robert E. Megginson

Download or read book An Introduction to Banach Space Theory written by Robert E. Megginson and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.

Introduction to Measure Theory and Integration

Download Introduction to Measure Theory and Integration PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 8876423869
Total Pages : 193 pages
Book Rating : 4.8/5 (764 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Measure Theory and Integration by : Luigi Ambrosio

Download or read book Introduction to Measure Theory and Integration written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2012-02-21 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook collects the notes for an introductory course in measure theory and integration. The course was taught by the authors to undergraduate students of the Scuola Normale Superiore, in the years 2000-2011. The goal of the course was to present, in a quick but rigorous way, the modern point of view on measure theory and integration, putting Lebesgue's Euclidean space theory into a more general context and presenting the basic applications to Fourier series, calculus and real analysis. The text can also pave the way to more advanced courses in probability, stochastic processes or geometric measure theory. Prerequisites for the book are a basic knowledge of calculus in one and several variables, metric spaces and linear algebra. All results presented here, as well as their proofs, are classical. The authors claim some originality only in the presentation and in the choice of the exercises. Detailed solutions to the exercises are provided in the final part of the book.

Orlicz Spaces and Generalized Orlicz Spaces

Download Orlicz Spaces and Generalized Orlicz Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 303015100X
Total Pages : 176 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Orlicz Spaces and Generalized Orlicz Spaces by : Petteri Harjulehto

Download or read book Orlicz Spaces and Generalized Orlicz Spaces written by Petteri Harjulehto and published by Springer. This book was released on 2019-05-07 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a systematic treatment of generalized Orlicz spaces (also known as Musielak–Orlicz spaces) with minimal assumptions on the generating Φ-function. It introduces and develops a technique centered on the use of equivalent Φ-functions. Results from classical functional analysis are presented in detail and new material is included on harmonic analysis. Extrapolation is used to prove, for example, the boundedness of Calderón–Zygmund operators. Finally, central results are provided for Sobolev spaces, including Poincaré and Sobolev–Poincaré inequalities in norm and modular forms. Primarily aimed at researchers and PhD students interested in Orlicz spaces or generalized Orlicz spaces, this book can be used as a basis for advanced graduate courses in analysis.

Functional Analysis

Download Functional Analysis PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319915126
Total Pages : 210 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis by : Sergei Ovchinnikov

Download or read book Functional Analysis written by Sergei Ovchinnikov and published by Springer. This book was released on 2018-06-09 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise text provides a gentle introduction to functional analysis. Chapters cover essential topics such as special spaces, normed spaces, linear functionals, and Hilbert spaces. Numerous examples and counterexamples aid in the understanding of key concepts, while exercises at the end of each chapter provide ample opportunities for practice with the material. Proofs of theorems such as the Uniform Boundedness Theorem, the Open Mapping Theorem, and the Closed Graph Theorem are worked through step-by-step, providing an accessible avenue to understanding these important results. The prerequisites for this book are linear algebra and elementary real analysis, with two introductory chapters providing an overview of material necessary for the subsequent text. Functional Analysis offers an elementary approach ideal for the upper-undergraduate or beginning graduate student. Primarily intended for a one-semester introductory course, this text is also a perfect resource for independent study or as the basis for a reading course.

Integral Operators in Non-Standard Function Spaces

Download Integral Operators in Non-Standard Function Spaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031649834
Total Pages : 519 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Integral Operators in Non-Standard Function Spaces by : Vakhtang Kokilashvili

Download or read book Integral Operators in Non-Standard Function Spaces written by Vakhtang Kokilashvili and published by Springer Nature. This book was released on with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Nonlinear Systems

Download Nonlinear Systems PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1803569263
Total Pages : 246 pages
Book Rating : 4.8/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Systems by : Bo Yang

Download or read book Nonlinear Systems written by Bo Yang and published by BoD – Books on Demand. This book was released on 2023-03-15 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of input. Nonlinear control systems, which are among the new technologies most widely used in many fields such as economic management, industrial production, technology research and development, ecological prevention and control, are at the core of worldwide automation control technology. In contrast to linear control systems, the nonlinear control system has the characteristics of a data model: stability, zero-input system response, self-excited oscillation or limit cycle, and a more complex structure, increasing the difficulty of its theoretical analysis and technical development. Nonlinear systems are common phenomena in real life and as such cannot be ignored. Analysis and research of nonlinear systems are therefore important, and researchers need to clarify their characteristics, explore scientific and effective application measures, and finally enhance their control quality. This book comprehensively investigates the main principles, core mechanisms, typical problems, and relevant solutions involved in nonlinear systems. In general, this book aims to provide advanced research on nonlinear systems and control schemes for researchers and engineers working in related fields, and thus promote future study in this research area.

Research Topics in Analysis, Volume I

Download Research Topics in Analysis, Volume I PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031178378
Total Pages : 544 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Research Topics in Analysis, Volume I by : Shouchuan Hu

Download or read book Research Topics in Analysis, Volume I written by Shouchuan Hu and published by Springer Nature. This book was released on 2022-11-29 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, which is the first of two volumes, presents, in a unique way, some of the most relevant research tools of modern analysis. This work empowers young researchers with all the necessary techniques to explore the various subfields of this broad subject, and introduces relevant frameworks where these tools can be immediately deployed. Volume I starts with the foundations of modern analysis. The first three chapters are devoted to topology, measure theory, and functional analysis. Chapter 4 offers a comprehensive analysis of the main function spaces, while Chapter 5 covers more concrete subjects, like multivariate analysis, which are closely related to applications and more difficult to find in compact form. Chapter 6 deals with smooth and non-smooth calculus of functions; Chapter 7 introduces certain important classes of nonlinear operators; and Chapter 8 complements the previous three chapters with topics of variational analysis. Each chapter of this volume finishes with a list of problems – handy for understanding and self-study – and historical notes that give the reader a more vivid picture of how the theory developed. Volume II consists of various applications using the tools and techniques developed in this volume. By offering a clear and wide picture of the tools and applications of modern analysis, this work can be of great benefit not only to mature graduate students seeking topics for research, but also to experienced researchers with an interest in this vast and rich field of mathematics.

Lebesgue Measure and Integration

Download Lebesgue Measure and Integration PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118030982
Total Pages : 314 pages
Book Rating : 4.1/5 (18 download)

DOWNLOAD NOW!


Book Synopsis Lebesgue Measure and Integration by : Frank Burk

Download or read book Lebesgue Measure and Integration written by Frank Burk and published by John Wiley & Sons. This book was released on 2011-10-14 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: A superb text on the fundamentals of Lebesgue measure and integration. This book is designed to give the reader a solid understanding of Lebesgue measure and integration. It focuses on only the most fundamental concepts, namely Lebesgue measure for R and Lebesgue integration for extended real-valued functions on R. Starting with a thorough presentation of the preliminary concepts of undergraduate analysis, this book covers all the important topics, including measure theory, measurable functions, and integration. It offers an abundance of support materials, including helpful illustrations, examples, and problems. To further enhance the learning experience, the author provides a historical context that traces the struggle to define "area" and "area under a curve" that led eventually to Lebesgue measure and integration. Lebesgue Measure and Integration is the ideal text for an advanced undergraduate analysis course or for a first-year graduate course in mathematics, statistics, probability, and other applied areas. It will also serve well as a supplement to courses in advanced measure theory and integration and as an invaluable reference long after course work has been completed.