Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
An Introduction To The Theory Of Real Functions
Download An Introduction To The Theory Of Real Functions full books in PDF, epub, and Kindle. Read online An Introduction To The Theory Of Real Functions ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Real Analysis by : Jewgeni H. Dshalalow
Download or read book Real Analysis written by Jewgeni H. Dshalalow and published by CRC Press. This book was released on 2000-09-28 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for use in a two-semester course on abstract analysis, REAL ANALYSIS: An Introduction to the Theory of Real Functions and Integration illuminates the principle topics that constitute real analysis. Self-contained, with coverage of topology, measure theory, and integration, it offers a thorough elaboration of major theorems, notions, and co
Book Synopsis An Introduction to the Theory of Real Functions by : Stanislaw Lojasiewicz
Download or read book An Introduction to the Theory of Real Functions written by Stanislaw Lojasiewicz and published by . This book was released on 1988-08-18 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise, classical approach to the theory of real functions, set in the topological context of metric spaces. Newly translated by G. H. Lawden of the Univ. of Sussex and expanded from the earlier Polish editions to include remarks on the extension of finitely many additive functions to a measure, construction of a continuous, non-differential function of a general type, the Banach-Vitali theorem, and Stepanov's theorem. Prerequisites are set theory, topology, and calculus.
Book Synopsis Intermediate Analysis by : John Meigs Hubbell Olmsted
Download or read book Intermediate Analysis written by John Meigs Hubbell Olmsted and published by . This book was released on 1956 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Complexity Theory of Real Functions by : K. Ko
Download or read book Complexity Theory of Real Functions written by K. Ko and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: Starting with Cook's pioneering work on NP-completeness in 1970, polynomial complexity theory, the study of polynomial-time com putability, has quickly emerged as the new foundation of algorithms. On the one hand, it bridges the gap between the abstract approach of recursive function theory and the concrete approach of analysis of algorithms. It extends the notions and tools of the theory of computability to provide a solid theoretical foundation for the study of computational complexity of practical problems. In addition, the theoretical studies of the notion of polynomial-time tractability some times also yield interesting new practical algorithms. A typical exam ple is the application of the ellipsoid algorithm to combinatorial op timization problems (see, for example, Lovasz [1986]). On the other hand, it has a strong influence on many different branches of mathe matics, including combinatorial optimization, graph theory, number theory and cryptography. As a consequence, many researchers have begun to re-examine various branches of classical mathematics from the complexity point of view. For a given nonconstructive existence theorem in classical mathematics, one would like to find a construc tive proof which admits a polynomial-time algorithm for the solution. One of the examples is the recent work on algorithmic theory of per mutation groups. In the area of numerical computation, there are also two tradi tionally independent approaches: recursive analysis and numerical analysis.
Book Synopsis Functions of a Real Variable by : N. Bourbaki
Download or read book Functions of a Real Variable written by N. Bourbaki and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an English translation of Bourbaki’s Fonctions d'une Variable Réelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.
Book Synopsis An Introduction to Complex Function Theory by : Bruce P. Palka
Download or read book An Introduction to Complex Function Theory written by Bruce P. Palka and published by Springer Science & Business Media. This book was released on 1991 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.
Book Synopsis Introduction to the Theory of Algebraic Functions of One Variable by : Claude Chevalley
Download or read book Introduction to the Theory of Algebraic Functions of One Variable written by Claude Chevalley and published by American Mathematical Soc.. This book was released on 1951-12-31 with total page 204 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an approach to algebraic geometry of curves that is treated as the theory of algebraic functions on the curve. This book discusses such topics as the theory of divisors on a curve, the Riemann-Roch theorem, $p$-adic completion, and extensions of the fields of functions (covering theory) and of the fields of constants.
Book Synopsis An Introduction to Ramsey Theory by : Matthew Katz
Download or read book An Introduction to Ramsey Theory written by Matthew Katz and published by American Mathematical Soc.. This book was released on 2018-10-03 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes the reader on a journey through Ramsey theory, from graph theory and combinatorics to set theory to logic and metamathematics. Written in an informal style with few requisites, it develops two basic principles of Ramsey theory: many combinatorial properties persist under partitions, but to witness this persistence, one has to start with very large objects. The interplay between those two principles not only produces beautiful theorems but also touches the very foundations of mathematics. In the course of this book, the reader will learn about both aspects. Among the topics explored are Ramsey's theorem for graphs and hypergraphs, van der Waerden's theorem on arithmetic progressions, infinite ordinals and cardinals, fast growing functions, logic and provability, Gödel incompleteness, and the Paris-Harrington theorem. Quoting from the book, “There seems to be a murky abyss lurking at the bottom of mathematics. While in many ways we cannot hope to reach solid ground, mathematicians have built impressive ladders that let us explore the depths of this abyss and marvel at the limits and at the power of mathematical reasoning at the same time. Ramsey theory is one of those ladders.”
Book Synopsis Entire and Meromorphic Functions by : Lee A. Rubel
Download or read book Entire and Meromorphic Functions written by Lee A. Rubel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics is a beautiful subject, and entire functions is its most beautiful branch. Every aspect of mathematics enters into it, from analysis, algebra, and geometry all the way to differential equations and logic. For example, my favorite theorem in all of mathematics is a theorem of R. NevanJinna that two functions, meromorphic in the whole complex plane, that share five values must be identical. For real functions, there is nothing that even remotely corresponds to this. This book is an introduction to the theory of entire and meromorphic functions, with a heavy emphasis on Nevanlinna theory, otherwise known as value-distribution theory. Things included here that occur in no other book (that we are aware of) are the Fourier series method for entire and mero morphic functions, a study of integer valued entire functions, the Malliavin Rubel extension of Carlson's Theorem (the "sampling theorem"), and the first-order theory of the ring of all entire functions, and a final chapter on Tarski's "High School Algebra Problem," a topic from mathematical logic that connects with entire functions. This book grew out of a set of classroom notes for a course given at the University of Illinois in 1963, but they have been much changed, corrected, expanded, and updated, partially for a similar course at the same place in 1993. My thanks to the many students who prepared notes and have given corrections and comments.
Book Synopsis Real Variables: An Introduction to the Theory of Functions by : Karo Maestro
Download or read book Real Variables: An Introduction to the Theory of Functions written by Karo Maestro and published by Independently Published. This book was released on 2019-02 with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt: This wonderful textbook, written by one of the preeminent teachers and researchers of analysis of the mid-20th century, gives a deep and comprehensive presentation of undergraduate real analysis of one and several variables that is accessible to any student with a good working knowledge of calculus and some experience with proofs, such as can be provided by a non-applied first linear algebra course or discrete mathematics course. The book lies midway in difficulty between the very basic analysis texts i.e. "baby real variables" texts that present a first course in rigorous single variable calculus and hard-edged real variables courses set in abstract metric spaces like Rudin and Pugh. It is also very broad in coverage. The republication of this book for the first time in nearly 50 years will provide an excellent choice for either a course text or self-study in undergraduate analysis.Several aspects of the book's unusual organization and content make it very deserving of low cost republication. Firstly, while it covers just about all the usual topics in any undergraduate analysis text-number systems, functions, limits of functions and sequences of one and several variables in ℝn, continuity, differentiation and integration of functions in ℝ, bounded sequences, metric spaces, basic point set topology, infinite series, power series, convergence tests, improper integrals, partial and total derivatives and multiple integrals- it has a number of unique aspects to the presentation that distinguish it from other textbooks. For example, a number of important concepts of analysis are covered in the starred sections and exercises that are not usually covered in these courses, such as point set topology, Riemann-Steijles integration, vector analysis and differential forms. Another excellent innovation that an entire opening chapter giving a far more detailed axiomatic description of the number systems without explicitly constructing them. While most analysis texts have such an opening section, Olmstead's is longer and more detailed then the ones found in most books with many substantial exercises. Another positive quality of the book is its' unusual midway level of difficulty. Calculus courses today are far weaker than they were when the standard textbooks such as Walter Rudin's Principles of Mathematical Analysis were published. As a result, a number of students beginning analysis today need a bit more foundational training in rigorous calculus before tackling functions in Euclidean spaces and abstract metric spaces. So usually students have to begin with a "baby real variables" text before moving on to analysis on metric spaces. Olmsted does a fine job in his early chapters of presenting the properties of the real numbers and a precise presentation of calculus on the real line. This allows the first half of the text to act as a "baby real variables" book i.e. a bridge between today's calculus courses and hard-edged classical analysis courses on metric spaces. As a result, students will only need one inexpensive text rather than two. Lastly, Olmsted contains "pragmatic" sections that discuss classical, more computational aspects of analysis that would be of great interest to applied mathematics, physics and engineering students. It's clear that Olmsted's book is an extraordinarily versatile textbook for undergraduate analysis courses at all levels. It will make a strong addition to the undergraduate analysis textbook literature and will be immensely useful to students and teachers alike as either a low-priced main textbook or as a supplement.
Book Synopsis Theory of Functions of a Real Variable by : I. P. Natanson
Download or read book Theory of Functions of a Real Variable written by I. P. Natanson and published by . This book was released on 1961 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis A Second Course on Real Functions by : A. C. M. van Rooij
Download or read book A Second Course on Real Functions written by A. C. M. van Rooij and published by Cambridge University Press. This book was released on 1982-03-25 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: When considering a mathematical theorem one ought not only to know how to prove it but also why and whether any given conditions are necessary. All too often little attention is paid to to this side of the theory and in writing this account of the theory of real functions the authors hope to rectify matters. They have put the classical theory of real functions in a modern setting and in so doing have made the mathematical reasoning rigorous and explored the theory in much greater depth than is customary. The subject matter is essentially the same as that of ordinary calculus course and the techniques used are elementary (no topology, measure theory or functional analysis). Thus anyone who is acquainted with elementary calculus and wishes to deepen their knowledge should read this.
Book Synopsis An Introduction to Measure Theory by : Terence Tao
Download or read book An Introduction to Measure Theory written by Terence Tao and published by American Mathematical Soc.. This book was released on 2021-09-03 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.
Book Synopsis Introduction to the Theory of Analytic Functions by : James Harkness
Download or read book Introduction to the Theory of Analytic Functions written by James Harkness and published by . This book was released on 1898 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Methods of the Theory of Functions of Many Complex Variables by : Vasiliy Sergeyevich Vladimirov
Download or read book Methods of the Theory of Functions of Many Complex Variables written by Vasiliy Sergeyevich Vladimirov and published by Courier Corporation. This book was released on 2007-01-01 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This systematic exposition outlines the fundamentals of the theory of single sheeted domains of holomorphy. It further illustrates applications to quantum field theory, the theory of functions, and differential equations with constant coefficients. Students of quantum field theory will find this text of particular value. The text begins with an introduction that defines the basic concepts and elementary propositions, along with the more salient facts from the theory of functions of real variables and the theory of generalized functions. Subsequent chapters address the theory of plurisubharmonic functions and pseudoconvex domains, along with characteristics of domains of holomorphy. These explorations are further examined in terms of four types of domains: multiple-circular, tubular, semitubular, and Hartogs' domains. Surveys of integral representations focus on the Martinelli-Bochner, Bergman-Weil, and Bochner representations. The final chapter is devoted to applications, particularly those involved in field theory. It employs the theory of generalized functions, along with the theory of functions of several complex variables.
Book Synopsis Elementary Analysis by : Kenneth A. Ross
Download or read book Elementary Analysis written by Kenneth A. Ross and published by CUP Archive. This book was released on 2014-01-15 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introduction to Real Analysis by : Christopher Heil
Download or read book Introduction to Real Analysis written by Christopher Heil and published by Springer. This book was released on 2019-07-20 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed over years of classroom use, this textbook provides a clear and accessible approach to real analysis. This modern interpretation is based on the author’s lecture notes and has been meticulously tailored to motivate students and inspire readers to explore the material, and to continue exploring even after they have finished the book. The definitions, theorems, and proofs contained within are presented with mathematical rigor, but conveyed in an accessible manner and with language and motivation meant for students who have not taken a previous course on this subject. The text covers all of the topics essential for an introductory course, including Lebesgue measure, measurable functions, Lebesgue integrals, differentiation, absolute continuity, Banach and Hilbert spaces, and more. Throughout each chapter, challenging exercises are presented, and the end of each section includes additional problems. Such an inclusive approach creates an abundance of opportunities for readers to develop their understanding, and aids instructors as they plan their coursework. Additional resources are available online, including expanded chapters, enrichment exercises, a detailed course outline, and much more. Introduction to Real Analysis is intended for first-year graduate students taking a first course in real analysis, as well as for instructors seeking detailed lecture material with structure and accessibility in mind. Additionally, its content is appropriate for Ph.D. students in any scientific or engineering discipline who have taken a standard upper-level undergraduate real analysis course.