An Introduction to Tensor Analysis

Download An Introduction to Tensor Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000795918
Total Pages : 127 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Tensor Analysis by : Bipin Singh Koranga

Download or read book An Introduction to Tensor Analysis written by Bipin Singh Koranga and published by CRC Press. This book was released on 2022-09-01 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of Tensor Analysis deals with the problem of the formulation of the relation between various entities in forms which remain invariant when we pass from one system of coordinates to another. The invariant form of equation is necessarily related to the possible system of coordinates with reference to which the equation remains invariant. The primary purpose of this book is the study of the invariance form of equation relative to the totally of the rectangular co-ordinate system in the three-dimensional Euclidean space. We start with the consideration of the way the sets representing various entities are transformed when we pass from one system of rectangular co-ordinates to another. A Tensor may be a physical entity that can be described as a Tensor only with respect to the manner of its representation by means of multi-sux sets associated with different system of axes such that the sets associated with different system of co-ordinate obey the transformation law for Tensor. We have employed sux notation for tensors of any order, we could also employ single letter such A,B to denote Tensors.

Tensor Analysis for Engineers

Download Tensor Analysis for Engineers PDF Online Free

Author :
Publisher :
ISBN 13 : 9781523140084
Total Pages : 0 pages
Book Rating : 4.1/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Tensor Analysis for Engineers by : Mehrzad Tabatabaian

Download or read book Tensor Analysis for Engineers written by Mehrzad Tabatabaian and published by . This book was released on 2020 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Manifolds, Tensor Analysis, and Applications

Download Manifolds, Tensor Analysis, and Applications PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461210291
Total Pages : 666 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Manifolds, Tensor Analysis, and Applications by : Ralph Abraham

Download or read book Manifolds, Tensor Analysis, and Applications written by Ralph Abraham and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide core material in nonlinear analysis for mathematicians, physicists, engineers, and mathematical biologists. The main goal is to provide a working knowledge of manifolds, dynamical systems, tensors, and differential forms. Some applications to Hamiltonian mechanics, fluid me chanics, electromagnetism, plasma dynamics and control thcory arc given in Chapter 8, using both invariant and index notation. The current edition of the book does not deal with Riemannian geometry in much detail, and it does not treat Lie groups, principal bundles, or Morse theory. Some of this is planned for a subsequent edition. Meanwhile, the authors will make available to interested readers supplementary chapters on Lie Groups and Differential Topology and invite comments on the book's contents and development. Throughout the text supplementary topics are given, marked with the symbols ~ and {l:;J. This device enables the reader to skip various topics without disturbing the main flow of the text. Some of these provide additional background material intended for completeness, to minimize the necessity of consulting too many outside references. We treat finite and infinite-dimensional manifolds simultaneously. This is partly for efficiency of exposition. Without advanced applications, using manifolds of mappings, the study of infinite-dimensional manifolds can be hard to motivate.

Tensor Algebra and Tensor Analysis for Engineers

Download Tensor Algebra and Tensor Analysis for Engineers PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540939075
Total Pages : 253 pages
Book Rating : 4.5/5 (49 download)

DOWNLOAD NOW!


Book Synopsis Tensor Algebra and Tensor Analysis for Engineers by : Mikhail Itskov

Download or read book Tensor Algebra and Tensor Analysis for Engineers written by Mikhail Itskov and published by Springer Science & Business Media. This book was released on 2009-04-30 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: There is a large gap between engineering courses in tensor algebra on one hand, and the treatment of linear transformations within classical linear algebra on the other. This book addresses primarily engineering students with some initial knowledge of matrix algebra. Thereby, mathematical formalism is applied as far as it is absolutely necessary. Numerous exercises provided in the book are accompanied by solutions enabling autonomous study. The last chapters deal with modern developments in the theory of isotropic and anisotropic tensor functions and their applications to continuum mechanics and might therefore be of high interest for PhD-students and scientists working in this area.

An Introduction to Tensor Analysis for Engineers and Applied Scientists

Download An Introduction to Tensor Analysis for Engineers and Applied Scientists PDF Online Free

Author :
Publisher : Longman Publishing Group
ISBN 13 :
Total Pages : 136 pages
Book Rating : 4.0/5 ( download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Tensor Analysis for Engineers and Applied Scientists by : John R. Tyldesley

Download or read book An Introduction to Tensor Analysis for Engineers and Applied Scientists written by John R. Tyldesley and published by Longman Publishing Group. This book was released on 1975 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Tensor Calculus for Engineers and Physicists

Download Tensor Calculus for Engineers and Physicists PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 331931520X
Total Pages : 370 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Tensor Calculus for Engineers and Physicists by : Emil de Souza Sánchez Filho

Download or read book Tensor Calculus for Engineers and Physicists written by Emil de Souza Sánchez Filho and published by Springer. This book was released on 2016-05-20 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a rigorous approach to tensor manifolds in several aspects relevant for Engineers and Physicists working in industry or academia. With a thorough, comprehensive, and unified presentation, this book offers insights into several topics of tensor analysis, which covers all aspects of n-dimensional spaces. The main purpose of this book is to give a self-contained yet simple, correct and comprehensive mathematical explanation of tensor calculus for undergraduate and graduate students and for professionals. In addition to many worked problems, this book features a selection of examples, solved step by step. Although no emphasis is placed on special and particular problems of Engineering or Physics, the text covers the fundamentals of these fields of science. The book makes a brief introduction into the basic concept of the tensorial formalism so as to allow the reader to make a quick and easy review of the essential topics that enable having the grounds for the subsequent themes, without needing to resort to other bibliographical sources on tensors. Chapter 1 deals with Fundamental Concepts about tensors and chapter 2 is devoted to the study of covariant, absolute and contravariant derivatives. The chapters 3 and 4 are dedicated to the Integral Theorems and Differential Operators, respectively. Chapter 5 deals with Riemann Spaces, and finally the chapter 6 presents a concise study of the Parallelism of Vectors. It also shows how to solve various problems of several particular manifolds.

Vector and Tensor Analysis with Applications

Download Vector and Tensor Analysis with Applications PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486131904
Total Pages : 292 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Vector and Tensor Analysis with Applications by : A. I. Borisenko

Download or read book Vector and Tensor Analysis with Applications written by A. I. Borisenko and published by Courier Corporation. This book was released on 2012-08-28 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise, readable text ranges from definition of vectors and discussion of algebraic operations on vectors to the concept of tensor and algebraic operations on tensors. Worked-out problems and solutions. 1968 edition.

An Introduction to Tensor Analysis for Engineers and Applied Scientists

Download An Introduction to Tensor Analysis for Engineers and Applied Scientists PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 136 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Tensor Analysis for Engineers and Applied Scientists by : John R. Tyldesley

Download or read book An Introduction to Tensor Analysis for Engineers and Applied Scientists written by John R. Tyldesley and published by . This book was released on 1975 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt:

An Introduction to Tensor Analysis for Engineers and Applied Scientists

Download An Introduction to Tensor Analysis for Engineers and Applied Scientists PDF Online Free

Author :
Publisher :
ISBN 13 : 9780608309354
Total Pages : 126 pages
Book Rating : 4.3/5 (93 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Tensor Analysis for Engineers and Applied Scientists by : John R. Tyldesley

Download or read book An Introduction to Tensor Analysis for Engineers and Applied Scientists written by John R. Tyldesley and published by . This book was released on with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Vectors, Tensors and the Basic Equations of Fluid Mechanics

Download Vectors, Tensors and the Basic Equations of Fluid Mechanics PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048613489X
Total Pages : 322 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Vectors, Tensors and the Basic Equations of Fluid Mechanics by : Rutherford Aris

Download or read book Vectors, Tensors and the Basic Equations of Fluid Mechanics written by Rutherford Aris and published by Courier Corporation. This book was released on 2012-08-28 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.

Tensor Analysis with Applications in Mechanics

Download Tensor Analysis with Applications in Mechanics PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814313998
Total Pages : 378 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Tensor Analysis with Applications in Mechanics by : L. P. Lebedev

Download or read book Tensor Analysis with Applications in Mechanics written by L. P. Lebedev and published by World Scientific. This book was released on 2010 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. Preliminaries. 1.1. The vector concept revisited. 1.2. A first look at tensors. 1.3. Assumed background. 1.4. More on the notion of a vector. 1.5. Problems -- 2. Transformations and vectors. 2.1. Change of basis. 2.2. Dual bases. 2.3. Transformation to the reciprocal frame. 2.4. Transformation between general frames. 2.5. Covariant and contravariant components. 2.6. The cross product in index notation. 2.7. Norms on the space of vectors. 2.8. Closing remarks. 2.9. Problems -- 3. Tensors. 3.1. Dyadic quantities and tensors. 3.2. Tensors from an operator viewpoint. 3.3. Dyadic components under transformation. 3.4. More dyadic operations. 3.5. Properties of second-order tensors. 3.6. Eigenvalues and eigenvectors of a second-order symmetric tensor. 3.7. The Cayley-Hamilton theorem. 3.8. Other properties of second-order tensors. 3.9. Extending the Dyad idea. 3.10. Tensors of the fourth and higher orders. 3.11. Functions of tensorial arguments. 3.12. Norms for tensors, and some spaces. 3.13. Differentiation of tensorial functions. 3.14. Problems -- 4. Tensor fields. 4.1. Vector fields. 4.2. Differentials and the nabla operator. 4.3. Differentiation of a vector function. 4.4. Derivatives of the frame vectors. 4.5. Christoffel coefficients and their properties. 4.6. Covariant differentiation. 4.7. Covariant derivative of a second-order tensor. 4.8. Differential operations. 4.9. Orthogonal coordinate systems. 4.10. Some formulas of integration. 4.11. Problems -- 5. Elements of differential geometry. 5.1. Elementary facts from the theory of curves. 5.2. The torsion of a curve. 5.3. Frenet-Serret equations. 5.4. Elements of the theory of surfaces. 5.5. The second fundamental form of a surface. 5.6. Derivation formulas. 5.7. Implicit representation of a curve; contact of curves. 5.8. Osculating paraboloid. 5.9. The principal curvatures of a surface. 5.10. Surfaces of revolution. 5.11. Natural equations of a curve. 5.12. A word about rigor. 5.13. Conclusion. 5.14. Problems -- 6. Linear elasticity. 6.1. Stress tensor. 6.2. Strain tensor. 6.3. Equation of motion. 6.4. Hooke's law. 6.5. Equilibrium equations in displacements. 6.6. Boundary conditions and boundary value problems. 6.7. Equilibrium equations in stresses. 6.8. Uniqueness of solution for the boundary value problems of elasticity. 6.9. Betti's reciprocity theorem. 6.10. Minimum total energy principle. 6.11. Ritz's method. 6.12. Rayleigh's variational principle. 6.13. Plane waves. 6.14. Plane problems of elasticity. 6.15. Problems -- 7. Linear elastic shells. 7.1. Some useful formulas of surface theory. 7.2. Kinematics in a neighborhood of [symbol]. 7.3. Shell equilibrium equations. 7.4. Shell deformation and strains; Kirchhoff's hypotheses. 7.5. Shell energy. 7.6. Boundary conditions. 7.7. A few remarks on the Kirchhoff-Love theory. 7.8. Plate theory. 7.9. On Non-classical theories of plates and shells

Mathematical Techniques for Engineers and Scientists

Download Mathematical Techniques for Engineers and Scientists PDF Online Free

Author :
Publisher : SPIE Press
ISBN 13 : 9780819445063
Total Pages : 822 pages
Book Rating : 4.4/5 (45 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Techniques for Engineers and Scientists by : Larry C. Andrews

Download or read book Mathematical Techniques for Engineers and Scientists written by Larry C. Andrews and published by SPIE Press. This book was released on 2003 with total page 822 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This self-study text for practicing engineers and scientists explains the mathematical tools that are required for advanced technological applications, but are often not covered in undergraduate school. The authors (University of Central Florida) describe special functions, matrix methods, vector operations, the transformation laws of tensors, the analytic functions of a complex variable, integral transforms, partial differential equations, probability theory, and random processes. The book could also serve as a supplemental graduate text."--Memento.

MathTensor

Download MathTensor PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 :
Total Pages : 408 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis MathTensor by : Leonard Parker

Download or read book MathTensor written by Leonard Parker and published by Addison-Wesley Professional. This book was released on 1994 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a computer program which adds tensor analysis to Mathematica. The book includes: an introduction to MathTensor's commands and functions; information on how to apply MathTensor to specific problems; and tips on how to solve problems in electromagnetism and relativity.

Math Refresher for Scientists and Engineers

Download Math Refresher for Scientists and Engineers PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471791547
Total Pages : 361 pages
Book Rating : 4.4/5 (717 download)

DOWNLOAD NOW!


Book Synopsis Math Refresher for Scientists and Engineers by : John R. Fanchi

Download or read book Math Refresher for Scientists and Engineers written by John R. Fanchi and published by John Wiley & Sons. This book was released on 2006-06-12 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Expanded coverage of essential math, including integral equations, calculus of variations, tensor analysis, and special integrals Math Refresher for Scientists and Engineers, Third Edition is specifically designed as a self-study guide to help busy professionals and students in science and engineering quickly refresh and improve the math skills needed to perform their jobs and advance their careers. The book focuses on practical applications and exercises that readers are likely to face in their professional environments. All the basic math skills needed to manage contemporary technology problems are addressed and presented in a clear, lucid style that readers familiar with previous editions have come to appreciate and value. The book begins with basic concepts in college algebra and trigonometry, and then moves on to explore more advanced concepts in calculus, linear algebra (including matrices), differential equations, probability, and statistics. This Third Edition has been greatly expanded to reflect the needs of today's professionals. New material includes: * A chapter on integral equations * A chapter on calculus of variations * A chapter on tensor analysis * A section on time series * A section on partial fractions * Many new exercises and solutions Collectively, the chapters teach most of the basic math skills needed by scientists and engineers. The wide range of topics covered in one title is unique. All chapters provide a review of important principles and methods. Examples, exercises, and applications are used liberally throughout to engage the readers and assist them in applying their new math skills to actual problems. Solutions to exercises are provided in an appendix. Whether to brush up on professional skills or prepare for exams, readers will find this self-study guide enables them to quickly master the math they need. It can additionally be used as a textbook for advanced-level undergraduates in physics and engineering.

Tensors, Differential Forms, and Variational Principles

Download Tensors, Differential Forms, and Variational Principles PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048613198X
Total Pages : 402 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Tensors, Differential Forms, and Variational Principles by : David Lovelock

Download or read book Tensors, Differential Forms, and Variational Principles written by David Lovelock and published by Courier Corporation. This book was released on 2012-04-20 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.

Tensor Calculus and Analytical Dynamics

Download Tensor Calculus and Analytical Dynamics PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351411616
Total Pages : 444 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Tensor Calculus and Analytical Dynamics by : John G. Papastavridis

Download or read book Tensor Calculus and Analytical Dynamics written by John G. Papastavridis and published by Routledge. This book was released on 2018-12-12 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tensor Calculus and Analytical Dynamics provides a concise, comprehensive, and readable introduction to classical tensor calculus - in both holonomic and nonholonomic coordinates - as well as to its principal applications to the Lagrangean dynamics of discrete systems under positional or velocity constraints. The thrust of the book focuses on formal structure and basic geometrical/physical ideas underlying most general equations of motion of mechanical systems under linear velocity constraints. Written for the theoretically minded engineer, Tensor Calculus and Analytical Dynamics contains uniquely accessbile treatments of such intricate topics as: tensor calculus in nonholonomic variables Pfaffian nonholonomic constraints related integrability theory of Frobenius The book enables readers to move quickly and confidently in any particular geometry-based area of theoretical or applied mechanics in either classical or modern form.

Elements of Advanced Mathematical Analysis for Physics and Engineering

Download Elements of Advanced Mathematical Analysis for Physics and Engineering PDF Online Free

Author :
Publisher : Società Editrice Esculapio
ISBN 13 : 8874886454
Total Pages : 329 pages
Book Rating : 4.8/5 (748 download)

DOWNLOAD NOW!


Book Synopsis Elements of Advanced Mathematical Analysis for Physics and Engineering by : Filippo Gazzola

Download or read book Elements of Advanced Mathematical Analysis for Physics and Engineering written by Filippo Gazzola and published by Società Editrice Esculapio. This book was released on 2013-09-23 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep comprehension of applied sciences requires a solid knowledge of Mathematical Analysis. For most of high level scientific research, the good understanding of Functional Analysis and weak solutions to differential equations is essential. This book aims to deal with the main topics that are necessary to achieve such a knowledge. Still, this is the goal of many other texts in advanced analysis; and then, what would be a good reason to read or to consult this book? In order to answer this question, let us introduce the three Authors. Alberto Ferrero got his degree in Mathematics in 2000 and presently he is researcher in Mathematical Analysis at the Universit`a del Piemonte Orientale. Filippo Gazzola got his degree in Mathematics in 1987 and he is now full professor in Mathematical Analysis at the Politecnico di Milano. Maurizio Zanotti got his degree in Mechanical Engineering in 2004 and presently he is structural and machine designer and lecturer professor in Mathematical Analysis at the Politecnico di Milano. The three Authors, for the variety of their skills, decided to join their expertises to write this book. One of the reasons that should encourage its reading is that the presentation turns out to be a reasonable compromise among the essential mathematical rigor, the importance of the applications and the clearness, which is necessary to make the reference work pleasant to the readers, even to the inexperienced ones. The range of treated topics is quite wide and covers the main basic notions of the scientific research which is based upon mathematical models. We start from vector spaces and Lebesgue integral to reach the frontier of theoretical research such as the study of critical exponents for semilinear elliptic equations and recent problems in fluid dynamics. This long route passes through the theory of Banach and Hilbert spaces, Sobolev spaces, differential equations, Fourier and Laplace transforms, before which we recall some appropriate tools of Complex Analysis. We give all the proofs that have some didactic or applicative interest, while we omit the ones which are too technical or require too high level knowledge. This book has the ambitious purpose to be useful to a broad variety of readers. The first possible beneficiaries are of course the second or third year students of a scientific course of degree: in what follows they will find the topics that are necessary to approach more advanced studies in Mathematics and in other fields, especially Physics and Engineering. This text could be also useful to graduate students who want to start a Ph.D. course: indeed it contains the matter of a multidisciplinary Ph.D. course given by Filippo Gazzola for several years at Politecnico di Milano. Finally, this book could be addressed also to the ones who have already left education far-back but occasionally need to use mathematical tools: we refer both to university professors and their research, and to professionals and designers who want to model a certain phenomenon, but also to the nostalgics of the good old days when they were students. It is precisely for this last type of reader that we have also reported some elementary topics, such as the properties of numerical sets and of the integrals; moreover, every chapter is provided with examples and specific exercises aimed at the involvement of the reader. Let us start immediately inviting the reader to find an “anomaly” among the six formulas appearing in the cover. This book is the translation from Italian of the book ”Elementi di Analisi Superiore per la Fisica e l’Ingegneria”. The translation is due to Ilaria Lucardesi.