Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
An Introduction To Models And Decompositions In Operator Theory
Download An Introduction To Models And Decompositions In Operator Theory full books in PDF, epub, and Kindle. Read online An Introduction To Models And Decompositions In Operator Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis An Introduction to Models and Decompositions in Operator Theory by : Carlos S. Kubrusly
Download or read book An Introduction to Models and Decompositions in Operator Theory written by Carlos S. Kubrusly and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters.
Author :Carlos S. Kubrusly Publisher :Springer Science & Business Media ISBN 13 :9780817639921 Total Pages :152 pages Book Rating :4.6/5 (399 download)
Book Synopsis An Introduction to Models and Decompositions in Operator Theory by : Carlos S. Kubrusly
Download or read book An Introduction to Models and Decompositions in Operator Theory written by Carlos S. Kubrusly and published by Springer Science & Business Media. This book was released on 1997-08-19 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: By a Hilbert-space operator we mean a bounded linear transformation be tween separable complex Hilbert spaces. Decompositions and models for Hilbert-space operators have been very active research topics in operator theory over the past three decades. The main motivation behind them is the in variant subspace problem: does every Hilbert-space operator have a nontrivial invariant subspace? This is perhaps the most celebrated open question in op erator theory. Its relevance is easy to explain: normal operators have invariant subspaces (witness: the Spectral Theorem), as well as operators on finite dimensional Hilbert spaces (witness: canonical Jordan form). If one agrees that each of these (i. e. the Spectral Theorem and canonical Jordan form) is important enough an achievement to dismiss any further justification, then the search for nontrivial invariant subspaces is a natural one; and a recalcitrant one at that. Subnormal operators have nontrivial invariant subspaces (extending the normal branch), as well as compact operators (extending the finite-dimensional branch), but the question remains unanswered even for equally simple (i. e. simple to define) particular classes of Hilbert-space operators (examples: hyponormal and quasinilpotent operators). Yet the invariant subspace quest has certainly not been a failure at all, even though far from being settled. The search for nontrivial invariant subspaces has undoubtly yielded a lot of nice results in operator theory, among them, those concerning decompositions and models for Hilbert-space operators. This book contains nine chapters.
Book Synopsis Elements of Operator Theory by : Carlos S. Kubrusly
Download or read book Elements of Operator Theory written by Carlos S. Kubrusly and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: {\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.
Book Synopsis Semigroups of Operators: Theory and Applications by : A.V. Balakrishnan
Download or read book Semigroups of Operators: Theory and Applications written by A.V. Balakrishnan and published by Birkhäuser. This book was released on 2012-12-06 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: These Proceedings comprise the bulk of the papers presented at the Inter national Conference on Semigroups of Opemtors: Theory and Contro~ held 14-18 December 1998, Newport Beach, California, U.S.A. The intent of the Conference was to highlight recent advances in the the ory of Semigroups of Operators which provides the abstract framework for the time-domain solutions of time-invariant boundary-value/initial-value problems of partial differential equations. There is of course a firewall between the ab stract theory and the applications and one of the Conference aims was to bring together both in the hope that it may be of value to both communities. In these days when all scientific activity is judged by its value on "dot com" it is not surprising that mathematical analysis that holds no promise of an immediate commercial product-line, or even a software tool-box, is not high in research priority. We are particularly pleased therefore that the National Science Foundation provided generous financial support without which this Conference would have been impossible to organize. Our special thanks to Dr. Kishan Baheti, Program Manager.
Book Synopsis Group Theoretical Methods in Physics by : G.S Pogosyan
Download or read book Group Theoretical Methods in Physics written by G.S Pogosyan and published by CRC Press. This book was released on 2005-05-01 with total page 630 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symmetry is permeating our understanding of nature: Group theoretical methods of intrinsic interest to mathematics have expanded their applications from physics to chemistry and biology. The ICGTMP Colloquia maintain the communication among the many branches into which this endeavor has bloomed. Lie group and representation theory, special functions, foundations of quantum mechanics, and elementary particle, nuclear, atomic, and molecular physics are among the traditional subjects. More recent areas include supersymmetry, superstrings and quantum gravity, integrability, nonlinear systems and quantum chaos, semigroups, time asymmetry and resonances, condensed matter, and statistical physics. Topics such as linear and nonlinear optics, quantum computing, discrete systems, and signal analysis have only in the last few years become part of the group theorists' turf. In Group Theoretical Methods in Physics, readers will find both review contributions that distill the state of the art in a broad field, and articles pointed to specific problems, in many cases, preceding their formal publication in the journal literature.
Book Synopsis Spectral Theory of Operators on Hilbert Spaces by : Carlos S. Kubrusly
Download or read book Spectral Theory of Operators on Hilbert Spaces written by Carlos S. Kubrusly and published by Springer Science & Business Media. This book was released on 2012-06-01 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Spaces is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathematicians using spectral theory of Hilbert space operators, as well as for scientists wishing to apply spectral theory to their field.
Download or read book Journal of Operator Theory written by and published by . This book was released on 1998 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Author :Carlos S. Kubrusly Publisher :Springer Science & Business Media ISBN 13 :9780817632427 Total Pages :172 pages Book Rating :4.6/5 (324 download)
Book Synopsis Hilbert Space Operators by : Carlos S. Kubrusly
Download or read book Hilbert Space Operators written by Carlos S. Kubrusly and published by Springer Science & Business Media. This book was released on 2003-08-07 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained work on Hilbert space operators takes a problem-solving approach to the subject, combining theoretical results with a wide variety of exercises that range from the straightforward to the state-of-the-art. Complete solutions to all problems are provided. The text covers the basics of bounded linear operators on a Hilbert space and gradually progresses to more advanced topics in spectral theory and quasireducible operators. Written in a motivating and rigorous style, the work has few prerequisites beyond elementary functional analysis, and will appeal to graduate students and researchers in mathematics, physics, engineering, and related disciplines.
Book Synopsis Spectral Theory of Bounded Linear Operators by : Carlos S. Kubrusly
Download or read book Spectral Theory of Bounded Linear Operators written by Carlos S. Kubrusly and published by Springer Nature. This book was released on 2020-01-30 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook introduces spectral theory for bounded linear operators by focusing on (i) the spectral theory and functional calculus for normal operators acting on Hilbert spaces; (ii) the Riesz-Dunford functional calculus for Banach-space operators; and (iii) the Fredholm theory in both Banach and Hilbert spaces. Detailed proofs of all theorems are included and presented with precision and clarity, especially for the spectral theorems, allowing students to thoroughly familiarize themselves with all the important concepts. Covering both basic and more advanced material, the five chapters and two appendices of this volume provide a modern treatment on spectral theory. Topics range from spectral results on the Banach algebra of bounded linear operators acting on Banach spaces to functional calculus for Hilbert and Banach-space operators, including Fredholm and multiplicity theories. Supplementary propositions and further notes are included as well, ensuring a wide range of topics in spectral theory are covered. Spectral Theory of Bounded Linear Operators is ideal for graduate students in mathematics, and will also appeal to a wider audience of statisticians, engineers, and physicists. Though it is mostly self-contained, a familiarity with functional analysis, especially operator theory, will be helpful.
Book Synopsis Journal of analysis and its applications by :
Download or read book Journal of analysis and its applications written by and published by . This book was released on 1982 with total page 1084 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Perspectives in Operator Theory by : Wolfgang Arendt
Download or read book Perspectives in Operator Theory written by Wolfgang Arendt and published by . This book was released on 2007 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hilbert Space Operators by : Carlos S. Kubrusly
Download or read book Hilbert Space Operators written by Carlos S. Kubrusly and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained work on Hilbert space operators takes a problem-solving approach to the subject, combining theoretical results with a wide variety of exercises that range from the straightforward to the state-of-the-art. Complete solutions to all problems are provided. The text covers the basics of bounded linear operators on a Hilbert space and gradually progresses to more advanced topics in spectral theory and quasireducible operators. Written in a motivating and rigorous style, the work has few prerequisites beyond elementary functional analysis, and will appeal to graduate students and researchers in mathematics, physics, engineering, and related disciplines.
Book Synopsis An Introduction to Hankel Operators by : Jonathan R. Partington
Download or read book An Introduction to Hankel Operators written by Jonathan R. Partington and published by Cambridge University Press. This book was released on 1988 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hankel operators are of wide application in mathematics and engineering and this account of them is both elementary and rigorous.
Book Synopsis Operator Theory, Functional Analysis and Applications by : M. Amélia Bastos
Download or read book Operator Theory, Functional Analysis and Applications written by M. Amélia Bastos and published by Springer Nature. This book was released on 2021-03-31 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.
Book Synopsis Advances in Mathematical Sciences and Applications by :
Download or read book Advances in Mathematical Sciences and Applications written by and published by . This book was released on 2006 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators by : Tailen Hsing
Download or read book Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators written by Tailen Hsing and published by John Wiley & Sons. This book was released on 2015-05-06 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.
Book Synopsis Acta Scientiarum Mathematicarum by : József Attila Tudományegyetem
Download or read book Acta Scientiarum Mathematicarum written by József Attila Tudományegyetem and published by . This book was released on 1998 with total page 818 pages. Available in PDF, EPUB and Kindle. Book excerpt: