Mathematical Statistics

Download Mathematical Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118771168
Total Pages : 611 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Statistics by : Richard J. Rossi

Download or read book Mathematical Statistics written by Richard J. Rossi and published by John Wiley & Sons. This book was released on 2018-06-14 with total page 611 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a unified approach to parametric estimation, confidence intervals, hypothesis testing, and statistical modeling, which are uniquely based on the likelihood function This book addresses mathematical statistics for upper-undergraduates and first year graduate students, tying chapters on estimation, confidence intervals, hypothesis testing, and statistical models together to present a unifying focus on the likelihood function. It also emphasizes the important ideas in statistical modeling, such as sufficiency, exponential family distributions, and large sample properties. Mathematical Statistics: An Introduction to Likelihood Based Inference makes advanced topics accessible and understandable and covers many topics in more depth than typical mathematical statistics textbooks. It includes numerous examples, case studies, a large number of exercises ranging from drill and skill to extremely difficult problems, and many of the important theorems of mathematical statistics along with their proofs. In addition to the connected chapters mentioned above, Mathematical Statistics covers likelihood-based estimation, with emphasis on multidimensional parameter spaces and range dependent support. It also includes a chapter on confidence intervals, which contains examples of exact confidence intervals along with the standard large sample confidence intervals based on the MLE's and bootstrap confidence intervals. There’s also a chapter on parametric statistical models featuring sections on non-iid observations, linear regression, logistic regression, Poisson regression, and linear models. Prepares students with the tools needed to be successful in their future work in statistics data science Includes practical case studies including real-life data collected from Yellowstone National Park, the Donner party, and the Titanic voyage Emphasizes the important ideas to statistical modeling, such as sufficiency, exponential family distributions, and large sample properties Includes sections on Bayesian estimation and credible intervals Features examples, problems, and solutions Mathematical Statistics: An Introduction to Likelihood Based Inference is an ideal textbook for upper-undergraduate and graduate courses in probability, mathematical statistics, and/or statistical inference.

An Introduction to Likelihood Analysis

Download An Introduction to Likelihood Analysis PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 56 pages
Book Rating : 4.:/5 (44 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Likelihood Analysis by : Andrew Pickles

Download or read book An Introduction to Likelihood Analysis written by Andrew Pickles and published by . This book was released on 1985 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Statistical Analysis with Missing Data

Download Statistical Analysis with Missing Data PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118595696
Total Pages : 444 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis with Missing Data by : Roderick J. A. Little

Download or read book Statistical Analysis with Missing Data written by Roderick J. A. Little and published by John Wiley & Sons. This book was released on 2019-03-21 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date, comprehensive treatment of a classic text on missing data in statistics The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems. Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics. An updated “classic” written by renowned authorities on the subject Features over 150 exercises (including many new ones) Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods Revises previous topics based on past student feedback and class experience Contains an updated and expanded bibliography The authors were awarded The Karl Pearson Prize in 2017 by the International Statistical Institute, for a research contribution that has had profound influence on statistical theory, methodology or applications. Their work "has been no less than defining and transforming." (ISI) Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.

An Introduction to Categorical Data Analysis

Download An Introduction to Categorical Data Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119405270
Total Pages : 393 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Categorical Data Analysis by : Alan Agresti

Download or read book An Introduction to Categorical Data Analysis written by Alan Agresti and published by John Wiley & Sons. This book was released on 2018-10-11 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.

Statistical Inference as Severe Testing

Download Statistical Inference as Severe Testing PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108563309
Total Pages : 503 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Statistical Inference as Severe Testing by : Deborah G. Mayo

Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

An Introduction to Probability and Statistical Inference

Download An Introduction to Probability and Statistical Inference PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128004371
Total Pages : 624 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Probability and Statistical Inference by : George G. Roussas

Download or read book An Introduction to Probability and Statistical Inference written by George G. Roussas and published by Academic Press. This book was released on 2014-10-21 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Probability and Statistical Inference, Second Edition, guides you through probability models and statistical methods and helps you to think critically about various concepts. Written by award-winning author George Roussas, this book introduces readers with no prior knowledge in probability or statistics to a thinking process to help them obtain the best solution to a posed question or situation. It provides a plethora of examples for each topic discussed, giving the reader more experience in applying statistical methods to different situations. This text contains an enhanced number of exercises and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities. Reorganized material is included in the statistical portion of the book to ensure continuity and enhance understanding. Each section includes relevant proofs where appropriate, followed by exercises with useful clues to their solutions. Furthermore, there are brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises are available to instructors in an Answers Manual. This text will appeal to advanced undergraduate and graduate students, as well as researchers and practitioners in engineering, business, social sciences or agriculture. - Content, examples, an enhanced number of exercises, and graphical illustrations where appropriate to motivate the reader and demonstrate the applicability of probability and statistical inference in a great variety of human activities - Reorganized material in the statistical portion of the book to ensure continuity and enhance understanding - A relatively rigorous, yet accessible and always within the prescribed prerequisites, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines - Relevant proofs where appropriate in each section, followed by exercises with useful clues to their solutions - Brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to instructors in an Answers Manual

Maximum Likelihood for Social Science

Download Maximum Likelihood for Social Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107185823
Total Pages : 327 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Maximum Likelihood for Social Science by : Michael D. Ward

Download or read book Maximum Likelihood for Social Science written by Michael D. Ward and published by Cambridge University Press. This book was released on 2018-11-22 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical, example-driven introduction to maximum likelihood for the social sciences. Emphasizes computation in R, model selection and interpretation.

Maximum Likelihood Estimation with Stata, Fourth Edition

Download Maximum Likelihood Estimation with Stata, Fourth Edition PDF Online Free

Author :
Publisher : Stata Press
ISBN 13 : 9781597180788
Total Pages : 352 pages
Book Rating : 4.1/5 (87 download)

DOWNLOAD NOW!


Book Synopsis Maximum Likelihood Estimation with Stata, Fourth Edition by : William Gould

Download or read book Maximum Likelihood Estimation with Stata, Fourth Edition written by William Gould and published by Stata Press. This book was released on 2010-10-27 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Maximum Likelihood Estimation with Stata, Fourth Edition is written for researchers in all disciplines who need to compute maximum likelihood estimators that are not available as prepackaged routines. Readers are presumed to be familiar with Stata, but no special programming skills are assumed except in the last few chapters, which detail how to add a new estimation command to Stata. The book begins with an introduction to the theory of maximum likelihood estimation with particular attention on the practical implications for applied work. Individual chapters then describe in detail each of the four types of likelihood evaluator programs and provide numerous examples, such as logit and probit regression, Weibull regression, random-effects linear regression, and the Cox proportional hazards model. Later chapters and appendixes provide additional details about the ml command, provide checklists to follow when writing evaluators, and show how to write your own estimation commands.

An Introduction to Probability and Statistics

Download An Introduction to Probability and Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118799658
Total Pages : 722 pages
Book Rating : 4.1/5 (187 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Probability and Statistics by : Vijay K. Rohatgi

Download or read book An Introduction to Probability and Statistics written by Vijay K. Rohatgi and published by John Wiley & Sons. This book was released on 2015-09-01 with total page 722 pages. Available in PDF, EPUB and Kindle. Book excerpt: A well-balanced introduction to probability theory and mathematical statistics Featuring updated material, An Introduction to Probability and Statistics, Third Edition remains a solid overview to probability theory and mathematical statistics. Divided intothree parts, the Third Edition begins by presenting the fundamentals and foundationsof probability. The second part addresses statistical inference, and the remainingchapters focus on special topics. An Introduction to Probability and Statistics, Third Edition includes: A new section on regression analysis to include multiple regression, logistic regression, and Poisson regression A reorganized chapter on large sample theory to emphasize the growing role of asymptotic statistics Additional topical coverage on bootstrapping, estimation procedures, and resampling Discussions on invariance, ancillary statistics, conjugate prior distributions, and invariant confidence intervals Over 550 problems and answers to most problems, as well as 350 worked out examples and 200 remarks Numerous figures to further illustrate examples and proofs throughout An Introduction to Probability and Statistics, Third Edition is an ideal reference and resource for scientists and engineers in the fields of statistics, mathematics, physics, industrial management, and engineering. The book is also an excellent text for upper-undergraduate and graduate-level students majoring in probability and statistics.

Maximum Likelihood Estimation for Sample Surveys

Download Maximum Likelihood Estimation for Sample Surveys PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1584886323
Total Pages : 393 pages
Book Rating : 4.5/5 (848 download)

DOWNLOAD NOW!


Book Synopsis Maximum Likelihood Estimation for Sample Surveys by : Raymond L. Chambers

Download or read book Maximum Likelihood Estimation for Sample Surveys written by Raymond L. Chambers and published by CRC Press. This book was released on 2012-05-02 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sample surveys provide data used by researchers in a large range of disciplines to analyze important relationships using well-established and widely used likelihood methods. The methods used to select samples often result in the sample differing in important ways from the target population and standard application of likelihood methods can lead to biased and inefficient estimates. Maximum Likelihood Estimation for Sample Surveys presents an overview of likelihood methods for the analysis of sample survey data that account for the selection methods used, and includes all necessary background material on likelihood inference. It covers a range of data types, including multilevel data, and is illustrated by many worked examples using tractable and widely used models. It also discusses more advanced topics, such as combining data, non-response, and informative sampling. The book presents and develops a likelihood approach for fitting models to sample survey data. It explores and explains how the approach works in tractable though widely used models for which we can make considerable analytic progress. For less tractable models numerical methods are ultimately needed to compute the score and information functions and to compute the maximum likelihood estimates of the model parameters. For these models, the book shows what has to be done conceptually to develop analyses to the point that numerical methods can be applied. Designed for statisticians who are interested in the general theory of statistics, Maximum Likelihood Estimation for Sample Surveys is also aimed at statisticians focused on fitting models to sample survey data, as well as researchers who study relationships among variables and whose sources of data include surveys.

An Introduction to Categorical Data Analysis

Download An Introduction to Categorical Data Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119405289
Total Pages : 414 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Categorical Data Analysis by : Alan Agresti

Download or read book An Introduction to Categorical Data Analysis written by Alan Agresti and published by John Wiley & Sons. This book was released on 2018-10-11 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.

Introductory Business Statistics 2e

Download Introductory Business Statistics 2e PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1801 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Introductory Business Statistics 2e by : Alexander Holmes

Download or read book Introductory Business Statistics 2e written by Alexander Holmes and published by . This book was released on 2023-12-13 with total page 1801 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory Business Statistics 2e aligns with the topics and objectives of the typical one-semester statistics course for business, economics, and related majors. The text provides detailed and supportive explanations and extensive step-by-step walkthroughs. The author places a significant emphasis on the development and practical application of formulas so that students have a deeper understanding of their interpretation and application of data. Problems and exercises are largely centered on business topics, though other applications are provided in order to increase relevance and showcase the critical role of statistics in a number of fields and real-world contexts. The second edition retains the organization of the original text. Based on extensive feedback from adopters and students, the revision focused on improving currency and relevance, particularly in examples and problems. This is an adaptation of Introductory Business Statistics 2e by OpenStax. You can access the textbook as pdf for free at openstax.org. Minor editorial changes were made to ensure a better ebook reading experience. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution 4.0 International License.

Introduction to Probability

Download Introduction to Probability PDF Online Free

Author :
Publisher : Athena Scientific
ISBN 13 : 188652923X
Total Pages : 544 pages
Book Rating : 4.8/5 (865 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Probability by : Dimitri Bertsekas

Download or read book Introduction to Probability written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2008-07-01 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intuitive, yet precise introduction to probability theory, stochastic processes, statistical inference, and probabilistic models used in science, engineering, economics, and related fields. This is the currently used textbook for an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students, and for a leading online class on the subject. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains a number of more advanced topics, including transforms, sums of random variables, a fairly detailed introduction to Bernoulli, Poisson, and Markov processes, Bayesian inference, and an introduction to classical statistics. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis is explained intuitively in the main text, and then developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems.

The Likelihood Principle

Download The Likelihood Principle PDF Online Free

Author :
Publisher : IMS
ISBN 13 : 9780940600133
Total Pages : 266 pages
Book Rating : 4.6/5 (1 download)

DOWNLOAD NOW!


Book Synopsis The Likelihood Principle by : James O. Berger

Download or read book The Likelihood Principle written by James O. Berger and published by IMS. This book was released on 1988 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Statistical Inference

Download Statistical Inference PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420093444
Total Pages : 256 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Statistical Inference by : Murray Aitkin

Download or read book Statistical Inference written by Murray Aitkin and published by CRC Press. This book was released on 2010-06-02 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling a gap in current Bayesian theory, Statistical Inference: An Integrated Bayesian/Likelihood Approach presents a unified Bayesian treatment of parameter inference and model comparisons that can be used with simple diffuse prior specifications. This novel approach provides new solutions to difficult model comparison problems and offers direct

A Modern Introduction to Probability and Statistics

Download A Modern Introduction to Probability and Statistics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846281687
Total Pages : 485 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis A Modern Introduction to Probability and Statistics by : F.M. Dekking

Download or read book A Modern Introduction to Probability and Statistics written by F.M. Dekking and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Suitable for self study Use real examples and real data sets that will be familiar to the audience Introduction to the bootstrap is included – this is a modern method missing in many other books

High-Dimensional Probability

Download High-Dimensional Probability PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108415199
Total Pages : 299 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis High-Dimensional Probability by : Roman Vershynin

Download or read book High-Dimensional Probability written by Roman Vershynin and published by Cambridge University Press. This book was released on 2018-09-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.