Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
An Introduction To Differential Geometrywith Use Of The Tensor Calculus
Download An Introduction To Differential Geometrywith Use Of The Tensor Calculus full books in PDF, epub, and Kindle. Read online An Introduction To Differential Geometrywith Use Of The Tensor Calculus ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Introduction to Differential Geometry by : Luther Pfahler Eisenhart
Download or read book Introduction to Differential Geometry written by Luther Pfahler Eisenhart and published by Princeton University Press. This book was released on 2015-12-08 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Book 3 in the Princeton Mathematical Series. Originally published in 1950. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Book Synopsis TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY by : PRASUN KUMAR NAYAK
Download or read book TEXTBOOK OF TENSOR CALCULUS AND DIFFERENTIAL GEOMETRY written by PRASUN KUMAR NAYAK and published by PHI Learning Pvt. Ltd.. This book was released on 2011-12-23 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: Primarily intended for the undergraduate and postgraduate students of mathematics, this textbook covers both geometry and tensor in a single volume. This book aims to provide a conceptual exposition of the fundamental results in the theory of tensors. It also illustrates the applications of tensors to differential geometry, mechanics and relativity. Organized in ten chapters, it provides the origin and nature of the tensor along with the scope of the tensor calculus. Besides this, it also discusses N-dimensional Riemannian space, characteristic peculiarity of Riemannian space, intrinsic property of surfaces, and properties and transformation of Christoffel’s symbols. Besides the students of mathematics, this book will be equally useful for the postgraduate students of physics. KEY FEATURES : Contains 250 worked out examples Includes more than 350 unsolved problems Gives thorough foundation in Tensors
Book Synopsis An Introduction to Riemannian Geometry and the Tensor Calculus by : Charles Ernest Weatherburn
Download or read book An Introduction to Riemannian Geometry and the Tensor Calculus written by Charles Ernest Weatherburn and published by CUP Archive. This book was released on 1938 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Introduction to Differential Geometry by : T. J. Willmore
Download or read book An Introduction to Differential Geometry written by T. J. Willmore and published by Courier Corporation. This book was released on 2013-05-13 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.
Book Synopsis Tensor Analysis on Manifolds by : Richard L. Bishop
Download or read book Tensor Analysis on Manifolds written by Richard L. Bishop and published by Courier Corporation. This book was released on 2012-04-26 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div
Book Synopsis Tensor and Vector Analysis by : C. E. Springer
Download or read book Tensor and Vector Analysis written by C. E. Springer and published by Courier Corporation. This book was released on 2013-09-26 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Assuming only a knowledge of basic calculus, this text's elementary development of tensor theory focuses on concepts related to vector analysis. The book also forms an introduction to metric differential geometry. 1962 edition.
Book Synopsis Introduction to Tensor Analysis and the Calculus of Moving Surfaces by : Pavel Grinfeld
Download or read book Introduction to Tensor Analysis and the Calculus of Moving Surfaces written by Pavel Grinfeld and published by Springer Science & Business Media. This book was released on 2013-09-24 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is distinguished from other texts on the subject by the depth of the presentation and the discussion of the calculus of moving surfaces, which is an extension of tensor calculus to deforming manifolds. Designed for advanced undergraduate and graduate students, this text invites its audience to take a fresh look at previously learned material through the prism of tensor calculus. Once the framework is mastered, the student is introduced to new material which includes differential geometry on manifolds, shape optimization, boundary perturbation and dynamic fluid film equations. The language of tensors, originally championed by Einstein, is as fundamental as the languages of calculus and linear algebra and is one that every technical scientist ought to speak. The tensor technique, invented at the turn of the 20th century, is now considered classical. Yet, as the author shows, it remains remarkably vital and relevant. The author’s skilled lecturing capabilities are evident by the inclusion of insightful examples and a plethora of exercises. A great deal of material is devoted to the geometric fundamentals, the mechanics of change of variables, the proper use of the tensor notation and the discussion of the interplay between algebra and geometry. The early chapters have many words and few equations. The definition of a tensor comes only in Chapter 6 – when the reader is ready for it. While this text maintains a consistent level of rigor, it takes great care to avoid formalizing the subject. The last part of the textbook is devoted to the Calculus of Moving Surfaces. It is the first textbook exposition of this important technique and is one of the gems of this text. A number of exciting applications of the calculus are presented including shape optimization, boundary perturbation of boundary value problems and dynamic fluid film equations developed by the author in recent years. Furthermore, the moving surfaces framework is used to offer new derivations of classical results such as the geodesic equation and the celebrated Gauss-Bonnet theorem.
Book Synopsis Introduction to Differential Geometry by : Joel W. Robbin
Download or read book Introduction to Differential Geometry written by Joel W. Robbin and published by Springer Nature. This book was released on 2022-01-12 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to flat spaces, symmetric spaces, and constant curvature manifolds. Also included are sections about manifolds with nonpositive sectional curvature, the Ricci tensor, the scalar curvature, and the Weyl tensor. An additional chapter goes beyond the scope of a one semester lecture course and deals with subjects such as conjugate points and the Morse index, the injectivity radius, the group of isometries and the Myers-Steenrod theorem, and Donaldson's differential geometric approach to Lie algebra theory.
Book Synopsis Introduction to Differential Geometry of Space Curves and Surfaces by : Taha Sochi
Download or read book Introduction to Differential Geometry of Space Curves and Surfaces written by Taha Sochi and published by Taha Sochi. This book was released on 2022-09-14 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is about differential geometry of space curves and surfaces. The formulation and presentation are largely based on a tensor calculus approach. It can be used as part of a course on tensor calculus as well as a textbook or a reference for an intermediate-level course on differential geometry of curves and surfaces. The book is furnished with an index, extensive sets of exercises and many cross references, which are hyperlinked for the ebook users, to facilitate linking related concepts and sections. The book also contains a considerable number of 2D and 3D graphic illustrations to help the readers and users to visualize the ideas and understand the abstract concepts. We also provided an introductory chapter where the main concepts and techniques needed to understand the offered materials of differential geometry are outlined to make the book fairly self-contained and reduce the need for external references.
Book Synopsis Differential Geometry by : Loring W. Tu
Download or read book Differential Geometry written by Loring W. Tu and published by Springer. This book was released on 2017-06-01 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text presents a graduate-level introduction to differential geometry for mathematics and physics students. The exposition follows the historical development of the concepts of connection and curvature with the goal of explaining the Chern–Weil theory of characteristic classes on a principal bundle. Along the way we encounter some of the high points in the history of differential geometry, for example, Gauss' Theorema Egregium and the Gauss–Bonnet theorem. Exercises throughout the book test the reader’s understanding of the material and sometimes illustrate extensions of the theory. Initially, the prerequisites for the reader include a passing familiarity with manifolds. After the first chapter, it becomes necessary to understand and manipulate differential forms. A knowledge of de Rham cohomology is required for the last third of the text. Prerequisite material is contained in author's text An Introduction to Manifolds, and can be learned in one semester. For the benefit of the reader and to establish common notations, Appendix A recalls the basics of manifold theory. Additionally, in an attempt to make the exposition more self-contained, sections on algebraic constructions such as the tensor product and the exterior power are included. Differential geometry, as its name implies, is the study of geometry using differential calculus. It dates back to Newton and Leibniz in the seventeenth century, but it was not until the nineteenth century, with the work of Gauss on surfaces and Riemann on the curvature tensor, that differential geometry flourished and its modern foundation was laid. Over the past one hundred years, differential geometry has proven indispensable to an understanding of the physical world, in Einstein's general theory of relativity, in the theory of gravitation, in gauge theory, and now in string theory. Differential geometry is also useful in topology, several complex variables, algebraic geometry, complex manifolds, and dynamical systems, among other fields. The field has even found applications to group theory as in Gromov's work and to probability theory as in Diaconis's work. It is not too far-fetched to argue that differential geometry should be in every mathematician's arsenal.
Book Synopsis Manifolds, Tensors and Forms by : Paul Renteln
Download or read book Manifolds, Tensors and Forms written by Paul Renteln and published by Cambridge University Press. This book was released on 2014 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.
Book Synopsis An Introduction to Differential Geometry by : Luther Pfahler Eisenhart
Download or read book An Introduction to Differential Geometry written by Luther Pfahler Eisenhart and published by . This book was released on 1940 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Modern Differential Geometry for Physicists by : Chris J. Isham
Download or read book Modern Differential Geometry for Physicists written by Chris J. Isham and published by Allied Publishers. This book was released on 2002 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Tensors, Differential Forms, and Variational Principles by : David Lovelock
Download or read book Tensors, Differential Forms, and Variational Principles written by David Lovelock and published by Courier Corporation. This book was released on 2012-04-20 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Incisive, self-contained account of tensor analysis and the calculus of exterior differential forms, interaction between the concept of invariance and the calculus of variations. Emphasis is on analytical techniques. Includes problems.
Book Synopsis An Introduction to Differential Geometry with Applications to Elasticity by : Philippe G. Ciarlet
Download or read book An Introduction to Differential Geometry with Applications to Elasticity written by Philippe G. Ciarlet and published by Springer Science & Business Media. This book was released on 2006-06-28 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].
Book Synopsis Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics by : Troy L Story
Download or read book Introduction to Differential Geometry with Applications to Navier-Stokes Dynamics written by Troy L Story and published by iUniverse. This book was released on 2005 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Differential Geometry with applications to Navier-Stokes Dynamics is an invaluable manuscript for anyone who wants to understand and use exterior calculus and differential geometry, the modern approach to calculus and geometry. Author Troy Story makes use of over thirty years of research experience to provide a smooth transition from conventional calculus to exterior calculus and differential geometry, assuming only a knowledge of conventional calculus. Introduction to Differential Geometry with applications to Navier-Stokes Dynamics includes the topics: Geometry, Exterior calculus, Homology and co-homology, Applications of differential geometry and exterior calculus to: Hamiltonian mechanics, geometric optics, irreversible thermodynamics, black hole dynamics, electromagnetism, classical string fields, and Navier-Stokes dynamics.
Book Synopsis Differential Geometry by : Heinrich W. Guggenheimer
Download or read book Differential Geometry written by Heinrich W. Guggenheimer and published by Courier Corporation. This book was released on 2012-04-27 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.