Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Algorithms And Applications Of The Monte Carlo Method
Download Algorithms And Applications Of The Monte Carlo Method full books in PDF, epub, and Kindle. Read online Algorithms And Applications Of The Monte Carlo Method ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Monte Carlo written by George Fishman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 721 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apart from a thorough exploration of all the important concepts, this volume includes over 75 algorithms, ready for putting into practice. The book also contains numerous hands-on implementations of selected algorithms to demonstrate applications in realistic settings. Readers are assumed to have a sound understanding of calculus, introductory matrix analysis, and intermediate statistics, but otherwise the book is self-contained. Suitable for graduates and undergraduates in mathematics and engineering, in particular operations research, statistics, and computer science.
Book Synopsis Handbook of Monte Carlo Methods by : Dirk P. Kroese
Download or read book Handbook of Monte Carlo Methods written by Dirk P. Kroese and published by John Wiley & Sons. This book was released on 2013-06-06 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive overview of Monte Carlo simulation that explores the latest topics, techniques, and real-world applications More and more of today’s numerical problems found in engineering and finance are solved through Monte Carlo methods. The heightened popularity of these methods and their continuing development makes it important for researchers to have a comprehensive understanding of the Monte Carlo approach. Handbook of Monte Carlo Methods provides the theory, algorithms, and applications that helps provide a thorough understanding of the emerging dynamics of this rapidly-growing field. The authors begin with a discussion of fundamentals such as how to generate random numbers on a computer. Subsequent chapters discuss key Monte Carlo topics and methods, including: Random variable and stochastic process generation Markov chain Monte Carlo, featuring key algorithms such as the Metropolis-Hastings method, the Gibbs sampler, and hit-and-run Discrete-event simulation Techniques for the statistical analysis of simulation data including the delta method, steady-state estimation, and kernel density estimation Variance reduction, including importance sampling, latin hypercube sampling, and conditional Monte Carlo Estimation of derivatives and sensitivity analysis Advanced topics including cross-entropy, rare events, kernel density estimation, quasi Monte Carlo, particle systems, and randomized optimization The presented theoretical concepts are illustrated with worked examples that use MATLAB®, a related Web site houses the MATLAB® code, allowing readers to work hands-on with the material and also features the author's own lecture notes on Monte Carlo methods. Detailed appendices provide background material on probability theory, stochastic processes, and mathematical statistics as well as the key optimization concepts and techniques that are relevant to Monte Carlo simulation. Handbook of Monte Carlo Methods is an excellent reference for applied statisticians and practitioners working in the fields of engineering and finance who use or would like to learn how to use Monte Carlo in their research. It is also a suitable supplement for courses on Monte Carlo methods and computational statistics at the upper-undergraduate and graduate levels.
Book Synopsis Introducing Monte Carlo Methods with R by : Christian Robert
Download or read book Introducing Monte Carlo Methods with R written by Christian Robert and published by Springer Science & Business Media. This book was released on 2010 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
Book Synopsis Monte Carlo Methods by : Thomas B. Hall
Download or read book Monte Carlo Methods written by Thomas B. Hall and published by . This book was released on 2020 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this compilation, the authors first consider applying the Monte Carlo method to the general form of the heat equation that is used for analyzing conduction heat transfer. The Monte Carlo method is then extended to some convection heat transfer applications by representing the probabilistic interpretation of the energy equation to obtain the temperature profile.Following this, Monte Carlo Methods: History and Applications discusses the Monte Carlo methods needed for the estimation of the mean glandular dose in both digital mammography and digital breast tomosynthesis. Various breast anatomies are considered.The gradual development of the Monte Carlo method for solving problems of mathematical chemistry is considered. A comparison of various quantitative structure-property/activity relationships based on the Monte Carlo method is also presented.Lastly, the Monte Carlo technique is used to characterize the statistical distributions of received measurements in an electric energy power system, as well as to quantify the correlations among these variables. To check the numerical accuracy of the results, the point estimate algorithm is employed.
Book Synopsis Quantum Monte Carlo Methods by : James Gubernatis
Download or read book Quantum Monte Carlo Methods written by James Gubernatis and published by Cambridge University Press. This book was released on 2016-06-02 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring detailed explanations of the major algorithms used in quantum Monte Carlo simulations, this is the first textbook of its kind to provide a pedagogical overview of the field and its applications. The book provides a comprehensive introduction to the Monte Carlo method, its use, and its foundations, and examines algorithms for the simulation of quantum many-body lattice problems at finite and zero temperature. These algorithms include continuous-time loop and cluster algorithms for quantum spins, determinant methods for simulating fermions, power methods for computing ground and excited states, and the variational Monte Carlo method. Also discussed are continuous-time algorithms for quantum impurity models and their use within dynamical mean-field theory, along with algorithms for analytically continuing imaginary-time quantum Monte Carlo data. The parallelization of Monte Carlo simulations is also addressed. This is an essential resource for graduate students, teachers, and researchers interested in quantum Monte Carlo techniques.
Book Synopsis The Monte Carlo Methods in Atmospheric Optics by : G.I. Marchuk
Download or read book The Monte Carlo Methods in Atmospheric Optics written by G.I. Marchuk and published by Springer. This book was released on 2013-04-17 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are connected with the estimation of spatial location and time characteristics of the radiation field. The most universal method for solving those problems is the Monte Carlo method, which is a numerical simulation of the radiative-transfer process. This process can be regarded as a Markov chain of photon collisions in a medium, which result in scattering or absorption. The Monte Carlo tech nique consists in computational simulation of that chain and in constructing statistical estimates of the desired functionals. The authors of this book have contributed to the development of mathemati cal methods of simulation and to the interpretation of optical observations. A series of general method using Monte Carlo techniques has been developed. The present book includes theories and algorithms of simulation. Numerical results corroborate the possibilities and give an impressive prospect of the applications of Monte Carlo methods.
Book Synopsis Monte Carlo Methods in Financial Engineering by : Paul Glasserman
Download or read book Monte Carlo Methods in Financial Engineering written by Paul Glasserman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Book Synopsis Sequential Monte Carlo Methods in Practice by : Arnaud Doucet
Download or read book Sequential Monte Carlo Methods in Practice written by Arnaud Doucet and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are revolutionizing the on-line analysis of data in many fileds. They have made it possible to solve numerically many complex, non-standard problems that were previously intractable. This book presents the first comprehensive treatment of these techniques.
Book Synopsis Theory and Applications of Monte Carlo Simulations by : Victor Chan
Download or read book Theory and Applications of Monte Carlo Simulations written by Victor Chan and published by . This book was released on 2013 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to introduce researchers and practitioners to recent advances and applications of Monte Carlo Simulation (MCS). Random sampling is the key of the MCS technique. The 11 chapters of this book collectively illustrates how such a sampling technique is exploited to solve difficult problems or analyze complex systems in various engineering and science domains. Issues related to the use of MCS including goodness-of-fit, uncertainty evaluation, variance reduction, optimization, and statistical estimation are discussed and examples of solutions are given. Novel applications of MCS are demonstrated in financial systems modeling, estimation of transition behavior of organic molecules, chemical reaction, particle diffusion, kinetic simulation of biophysics and biological data, and healthcare practices. To enlarge the accessibility of this book, both field-specific background materials and field-specific usages of MCS are introduced in most chapters. The aim of this book is to unify knowledge of MCS from different fields to facilitate research and new applications of MCS.
Book Synopsis Monte Carlo Methods by : Adrian Barbu
Download or read book Monte Carlo Methods written by Adrian Barbu and published by Springer Nature. This book was released on 2020-02-24 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.
Book Synopsis Monte Carlo Simulation for the Pharmaceutical Industry by : Mark Chang
Download or read book Monte Carlo Simulation for the Pharmaceutical Industry written by Mark Chang and published by CRC Press. This book was released on 2010-09-29 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: Helping you become a creative, logical thinker and skillful "simulator," Monte Carlo Simulation for the Pharmaceutical Industry: Concepts, Algorithms, and Case Studies provides broad coverage of the entire drug development process, from drug discovery to preclinical and clinical trial aspects to commercialization. It presents the theories and metho
Book Synopsis Monte Carlo Simulation by : Christopher Z. Mooney
Download or read book Monte Carlo Simulation written by Christopher Z. Mooney and published by SAGE. This book was released on 1997-04-07 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at researchers across the social sciences, this book explains the logic behind the Monte Carlo simulation method and demonstrates its uses for social and behavioural research.
Book Synopsis Understanding Molecular Simulation by : Daan Frenkel
Download or read book Understanding Molecular Simulation written by Daan Frenkel and published by Elsevier. This book was released on 2001-10-19 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practical use in the case studies used in the text. Since the first edition only five years ago, the simulation world has changed significantly -- current techniques have matured and new ones have appeared. This new edition deals with these new developments; in particular, there are sections on: - Transition path sampling and diffusive barrier crossing to simulaterare events - Dissipative particle dynamic as a course-grained simulation technique - Novel schemes to compute the long-ranged forces - Hamiltonian and non-Hamiltonian dynamics in the context constant-temperature and constant-pressure molecular dynamics simulations - Multiple-time step algorithms as an alternative for constraints - Defects in solids - The pruned-enriched Rosenbluth sampling, recoil-growth, and concerted rotations for complex molecules - Parallel tempering for glassy Hamiltonians Examples are included that highlight current applications and the codes of case studies are available on the World Wide Web. Several new examples have been added since the first edition to illustrate recent applications. Questions are included in this new edition. No prior knowledge of computer simulation is assumed.
Book Synopsis Monte Carlo Simulation in Statistical Physics by : Kurt Binder
Download or read book Monte Carlo Simulation in Statistical Physics written by Kurt Binder and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: When learning very formal material one comes to a stage where one thinks one has understood the material. Confronted with a "realiife" problem, the passivity of this understanding sometimes becomes painfully elear. To be able to solve the problem, ideas, methods, etc. need to be ready at hand. They must be mastered (become active knowledge) in order to employ them successfully. Starting from this idea, the leitmotif, or aim, of this book has been to elose this gap as much as possible. How can this be done? The material presented here was born out of a series of lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The series of lectures was split into two concurrent parts. In one part the "formal material" was presented. Since the background of those attending varied widely, the presentation of the formal material was kept as pedagogic as possible. In the formal part the general ideas behind the Monte Carlo method were developed. The Monte Carlo method has now found widespread appli cation in many branches of science such as physics, chemistry, and biology. Because of this, the scope of the lectures had to be narrowed down. We could not give a complete account and restricted the treatment to the ap plication of the Monte Carlo method to the physics of phase transitions. Here particular emphasis is placed on finite-size effects.
Book Synopsis Explorations in Monte Carlo Methods by : Ronald W. Shonkwiler
Download or read book Explorations in Monte Carlo Methods written by Ronald W. Shonkwiler and published by Springer Science & Business Media. This book was released on 2009-08-11 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Monte Carlo methods are among the most used and useful computational tools available today, providing efficient and practical algorithims to solve a wide range of scientific and engineering problems. Applications covered in this book include optimization, finance, statistical mechanics, birth and death processes, and gambling systems. Explorations in Monte Carlo Methods provides a hands-on approach to learning this subject. Each new idea is carefully motivated by a realistic problem, thus leading from questions to theory via examples and numerical simulations. Programming exercises are integrated throughout the text as the primary vehicle for learning the material. Each chapter ends with a large collection of problems illustrating and directing the material. This book is suitable as a textbook for students of engineering and the sciences, as well as mathematics.
Book Synopsis Monte Carlo Methods and Models in Finance and Insurance by : Ralf Korn
Download or read book Monte Carlo Methods and Models in Finance and Insurance written by Ralf Korn and published by CRC Press. This book was released on 2010-02-26 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Rom
Book Synopsis A Guide to Monte Carlo Simulations in Statistical Physics by : David P. Landau
Download or read book A Guide to Monte Carlo Simulations in Statistical Physics written by David P. Landau and published by Cambridge University Press. This book was released on 2000-08-17 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes all aspects of Monte Carlo simulation of complex physical systems encountered in condensed-matter physics and statistical mechanics, as well as in related fields, such as polymer science and lattice gauge theory. The authors give a succinct overview of simple sampling methods and develop the importance sampling method. In addition they introduce quantum Monte Carlo methods, aspects of simulations of growth phenomena and other systems far from equilibrium, and the Monte Carlo Renormalization Group approach to critical phenomena. The book includes many applications, examples, and current references, and exercises to help the reader.