Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Affine Flag Varieties And Quantum Symmetric Pairs
Download Affine Flag Varieties And Quantum Symmetric Pairs full books in PDF, epub, and Kindle. Read online Affine Flag Varieties And Quantum Symmetric Pairs ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Affine Flag Varieties and Quantum Symmetric Pairs by : Zhaobing Fan
Download or read book Affine Flag Varieties and Quantum Symmetric Pairs written by Zhaobing Fan and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quantum groups of finite and affine type $A$ admit geometric realizations in terms of partial flag varieties of finite and affine type $A$. Recently, the quantum group associated to partial flag varieties of finite type $B/C$ is shown to be a coideal subalgebra of the quantum group of finite type $A$.
Book Synopsis Affine Hecke Algebras and Quantum Symmetric Pairs by : Zhaobing Fan
Download or read book Affine Hecke Algebras and Quantum Symmetric Pairs written by Zhaobing Fan and published by American Mathematical Society. This book was released on 2023-01-18 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.
Book Synopsis Twenty-Four Hours of Local Cohomology by : Srikanth B. Iyengar
Download or read book Twenty-Four Hours of Local Cohomology written by Srikanth B. Iyengar and published by American Mathematical Society. This book was released on 2022-07-19 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is aimed to provide an introduction to local cohomology which takes cognizance of the breadth of its interactions with other areas of mathematics. It covers topics such as the number of defining equations of algebraic sets, connectedness properties of algebraic sets, connections to sheaf cohomology and to de Rham cohomology, Gröbner bases in the commutative setting as well as for $D$-modules, the Frobenius morphism and characteristic $p$ methods, finiteness properties of local cohomology modules, semigroup rings and polyhedral geometry, and hypergeometric systems arising from semigroups. The book begins with basic notions in geometry, sheaf theory, and homological algebra leading to the definition and basic properties of local cohomology. Then it develops the theory in a number of different directions, and draws connections with topology, geometry, combinatorics, and algorithmic aspects of the subject.
Book Synopsis Double Affine Hecke Algebras and Congruence Groups by : Bogdan Ion
Download or read book Double Affine Hecke Algebras and Congruence Groups written by Bogdan Ion and published by American Mathematical Soc.. This book was released on 2021-06-18 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: The most general construction of double affine Artin groups (DAAG) and Hecke algebras (DAHA) associates such objects to pairs of compatible reductive group data. We show that DAAG/DAHA always admit a faithful action by auto-morphisms of a finite index subgroup of the Artin group of type A2, which descends to a faithful outer action of a congruence subgroup of SL(2, Z)or PSL(2, Z). This was previously known only in some special cases and, to the best of our knowledge, not even conjectured to hold in full generality. It turns out that the structural intricacies of DAAG/DAHA are captured by the underlying semisimple data and, to a large extent, even by adjoint data; we prove our main result by reduction to the adjoint case. Adjoint DAAG/DAHA correspond in a natural way to affine Lie algebras, or more precisely to their affinized Weyl groups, which are the semi-direct products W Q∨ of the Weyl group W with the coroot lattice Q∨. They were defined topologically by van der Lek, and independently, algebraically, by Cherednik. We now describe our results for the adjoint case in greater detail. We first give a new Coxeter-type presentation for adjoint DAAG as quotients of the Coxeter braid groups associated to certain crystallographic diagrams that we call double affine Coxeter diagrams. As a consequence we show that the rank two Artin groups of type A2,B2,G2 act by automorphisms on the adjoint DAAG/DAHA associated to affine Lie algebras of twist number r =1, 2, 3, respec-tively. This extends a fundamental result of Cherednik for r =1. We show further that the above rank two Artin group action descends to an outer action of the congruence subgroup Γ1(r). In particular, Γ1(r) acts naturally on the set of isomorphism classes of representations of an adjoint DAAG/DAHA of twist number r, giving rise to a projective representation of Γ1(r)on the spaceof aΓ1(r)-stable representation. We also provide a classification of the involutions of Kazhdan-Lusztig type that appear in the context of these actions.
Book Synopsis Gromov-Witten Theory of Quotients of Fermat Calabi-Yau Varieties by : Hiroshi Iritani
Download or read book Gromov-Witten Theory of Quotients of Fermat Calabi-Yau Varieties written by Hiroshi Iritani and published by American Mathematical Soc.. This book was released on 2021-06-21 with total page 92 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gromov-Witten theory started as an attempt to provide a rigorous mathematical foundation for the so-called A-model topological string theory of Calabi-Yau varieties. Even though it can be defined for all the Kähler/symplectic manifolds, the theory on Calabi-Yau varieties remains the most difficult one. In fact, a great deal of techniques were developed for non-Calabi-Yau varieties during the last twenty years. These techniques have only limited bearing on the Calabi-Yau cases. In a certain sense, Calabi-Yau cases are very special too. There are two outstanding problems for the Gromov-Witten theory of Calabi-Yau varieties and they are the focus of our investigation.
Book Synopsis Paley-Wiener Theorems for a p-Adic Spherical Variety by : Patrick Delorme
Download or read book Paley-Wiener Theorems for a p-Adic Spherical Variety written by Patrick Delorme and published by American Mathematical Soc.. This book was released on 2021-06-21 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Let SpXq be the Schwartz space of compactly supported smooth functions on the p-adic points of a spherical variety X, and let C pXq be the space of Harish-Chandra Schwartz functions. Under assumptions on the spherical variety, which are satisfied when it is symmetric, we prove Paley–Wiener theorems for the two spaces, characterizing them in terms of their spectral transforms. As a corollary, we get relative analogs of the smooth and tempered Bernstein centers — rings of multipliers for SpXq and C pXq.WhenX “ a reductive group, our theorem for C pXq specializes to the well-known theorem of Harish-Chandra, and our theorem for SpXq corresponds to a first step — enough to recover the structure of the Bern-stein center — towards the well-known theorems of Bernstein [Ber] and Heiermann [Hei01].
Book Synopsis Forty Years Of Algebraic Groups, Algebraic Geometry, And Representation Theory In China: In Memory Of The Centenary Year Of Xihua Cao's Birth by : Jie Du
Download or read book Forty Years Of Algebraic Groups, Algebraic Geometry, And Representation Theory In China: In Memory Of The Centenary Year Of Xihua Cao's Birth written by Jie Du and published by World Scientific. This book was released on 2022-10-21 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Professor Xihua Cao (1920-2005) was a leading scholar at East China Normal University (ECNU) and a famous algebraist in China. His contribution to the Chinese academic circle is particularly the formation of a world-renowned 'ECNU School' in algebra, covering research areas include algebraic groups, quantum groups, algebraic geometry, Lie algebra, algebraic number theory, representation theory and other hot fields. In January 2020, in order to commemorate Professor Xihua Cao's centenary birthday, East China Normal University held a three-day academic conference. Scholars at home and abroad gave dedications or delivered lectures in the conference. This volume originates from the memorial conference, collecting the dedications of scholars, reminiscences of family members, and 16 academic articles written based on the lectures in the conference, covering a wide range of research hot topics in algebra. The book shows not only scholars' respect and memory for Professor Xihua Cao, but also the research achievements of Chinese scholars at home and abroad.
Book Synopsis Conformal Symmetry Breaking Differential Operators on Differential Forms by : Matthias Fischmann
Download or read book Conformal Symmetry Breaking Differential Operators on Differential Forms written by Matthias Fischmann and published by American Mathematical Soc.. This book was released on 2021-06-18 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: We study conformal symmetry breaking differential operators which map dif-ferential forms on Rn to differential forms on a codimension one subspace Rn−1. These operators are equivariant with respect to the conformal Lie algebra of the subspace Rn−1. They correspond to homomorphisms of generalized Verma mod-ules for so(n, 1) into generalized Verma modules for so(n+1, 1) both being induced from fundamental form representations of a parabolic subalgebra. We apply the F -method to derive explicit formulas for such homomorphisms. In particular, we find explicit formulas for the generators of the intertwining operators of the re-lated branching problems restricting generalized Verma modules for so(n +1, 1) to so(n, 1). As consequences, we derive closed formulas for all conformal symmetry breaking differential operators in terms of the first-order operators d, δ, d¯ and δ¯ and certain hypergeometric polynomials. A dominant role in these studies is played by two infinite sequences of symmetry breaking differential operators which depend on a complex parameter λ. Their values at special values of λ appear as factors in two systems of factorization identities which involve the Branson-Gover opera- tors of the Euclidean metrics on Rn and Rn−1 and the operators d, δ, d¯ and δ¯ as factors, respectively. Moreover, they naturally recover the gauge companion and Q-curvature operators of the Euclidean metric on the subspace Rn−1, respectively.
Book Synopsis Differential Function Spectra, the Differential Becker-Gottlieb Transfer, and Applications to Differential Algebraic K-Theory by : Ulrich Bunke
Download or read book Differential Function Spectra, the Differential Becker-Gottlieb Transfer, and Applications to Differential Algebraic K-Theory written by Ulrich Bunke and published by American Mathematical Soc.. This book was released on 2021-06-21 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: We develop differential algebraic K-theory for rings of integers in number fields and we construct a cycle map from geometrized bundles of modules over such a ring to the differential algebraic K-theory. We also treat some of the foundational aspects of differential cohomology, including differential function spectra and the differential Becker-Gottlieb transfer. We then state a transfer index conjecture about the equality of the Becker-Gottlieb transfer and the analytic transfer defined by Lott. In support of this conjecture, we derive some non-trivial consequences which are provable by independent means.
Book Synopsis Operator Theory on One-Sided Quaternion Linear Spaces: Intrinsic $S$-Functional Calculus and Spectral Operators by : Jonathan Gantner
Download or read book Operator Theory on One-Sided Quaternion Linear Spaces: Intrinsic $S$-Functional Calculus and Spectral Operators written by Jonathan Gantner and published by American Mathematical Society. This book was released on 2021-02-10 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two major themes drive this article: identifying the minimal structure necessary to formulate quaternionic operator theory and revealing a deep relation between complex and quaternionic operator theory. The theory for quaternionic right linear operators is usually formulated under the assumption that there exists not only a right- but also a left-multiplication on the considered Banach space $V$. This has technical reasons, as the space of bounded operators on $V$ is otherwise not a quaternionic linear space. A right linear operator is however only associated with the right multiplication on the space and in certain settings, for instance on quaternionic Hilbert spaces, the left multiplication is not defined a priori, but must be chosen randomly. Spectral properties of an operator should hence be independent of the left multiplication on the space.
Book Synopsis Łojasiewicz-Simon Gradient Inequalities for Coupled Yang-Mills Energy Functionals by : Paul M Feehan
Download or read book Łojasiewicz-Simon Gradient Inequalities for Coupled Yang-Mills Energy Functionals written by Paul M Feehan and published by American Mathematical Society. This book was released on 2021-02-10 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors' primary goal in this monograph is to prove Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions using Sobolev spaces that impose minimal regularity requirements on pairs of connections and sections.
Book Synopsis Theory of Fundamental Bessel Functions of High Rank by : Zhi Qi
Download or read book Theory of Fundamental Bessel Functions of High Rank written by Zhi Qi and published by American Mathematical Society. This book was released on 2021-02-10 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this article, the author studies fundamental Bessel functions for $mathrm{GL}_n(mathbb F)$ arising from the Voronoí summation formula for any rank $n$ and field $mathbb F = mathbb R$ or $mathbb C$, with focus on developing their analytic and asymptotic theory. The main implements and subjects of this study of fundamental Bessel functions are their formal integral representations and Bessel differential equations. The author proves the asymptotic formulae for fundamental Bessel functions and explicit connection formulae for the Bessel differential equations.
Book Synopsis Hecke Operators and Systems of Eigenvalues on Siegel Cusp Forms by : Kazuyuki Hatada
Download or read book Hecke Operators and Systems of Eigenvalues on Siegel Cusp Forms written by Kazuyuki Hatada and published by American Mathematical Soc.. This book was released on 2021-06-18 with total page 165 pages. Available in PDF, EPUB and Kindle. Book excerpt: View the abstract.
Book Synopsis Resolvent, Heat Kernel, and Torsion under Degeneration to Fibered Cusps by : Pierre Albin
Download or read book Resolvent, Heat Kernel, and Torsion under Degeneration to Fibered Cusps written by Pierre Albin and published by American Mathematical Soc.. This book was released on 2021-06-21 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: Manifolds with fibered cusps are a class of complete non-compact Riemannian manifolds including many examples of locally symmetric spaces of rank one. We study the spectrum of the Hodge Laplacian with coefficients in a flat bundle on a closed manifold undergoing degeneration to a manifold with fibered cusps. We obtain precise asymptotics for the resolvent, the heat kernel, and the determinant of the Laplacian. Using these asymptotics we obtain a topological description of the analytic torsion on a manifold with fibered cusps in terms of the R-torsion of the underlying manifold with boundary.
Book Synopsis Local Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary by : Chao Wang
Download or read book Local Well-Posedness and Break-Down Criterion of the Incompressible Euler Equations with Free Boundary written by Chao Wang and published by American Mathematical Soc.. This book was released on 2021-07-21 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, we prove the local well-posedness of the free boundary problem for the incompressible Euler equations in low regularity Sobolev spaces, in which the velocity is a Lipschitz function and the free surface belongs to C 3 2 +ε. Moreover, we also present a Beale-Kato-Majda type break-down criterion of smooth solution in terms of the mean curvature of the free surface, the gradient of the velocity and Taylor sign condition.
Book Synopsis Traffic Distributions and Independence: Permutation Invariant Random Matrices and the Three Notions of Independence by : Camille Male
Download or read book Traffic Distributions and Independence: Permutation Invariant Random Matrices and the Three Notions of Independence written by Camille Male and published by American Mathematical Society. This book was released on 2021-02-10 with total page 88 pages. Available in PDF, EPUB and Kindle. Book excerpt: Voiculescu's notion of asymptotic free independence is known for a large class of random matrices including independent unitary invariant matrices. This notion is extended for independent random matrices invariant in law by conjugation by permutation matrices. This fact leads naturally to an extension of free probability, formalized under the notions of traffic probability. The author first establishes this construction for random matrices and then defines the traffic distribution of random matrices, which is richer than the $^*$-distribution of free probability. The knowledge of the individual traffic distributions of independent permutation invariant families of matrices is sufficient to compute the limiting distribution of the join family. Under a factorization assumption, the author calls traffic independence the asymptotic rule that plays the role of independence with respect to traffic distributions. Wigner matrices, Haar unitary matrices and uniform permutation matrices converge in traffic distributions, a fact which yields new results on the limiting $^*$-distributions of several matrices the author can construct from them. Then the author defines the abstract traffic spaces as non commutative probability spaces with more structure. She proves that at an algebraic level, traffic independence in some sense unifies the three canonical notions of tensor, free and Boolean independence. A central limiting theorem is stated in this context, interpolating between the tensor, free and Boolean central limit theorems.
Book Synopsis C-Projective Geometry by : David M Calderbank
Download or read book C-Projective Geometry written by David M Calderbank and published by American Mathematical Society. This book was released on 2021-02-10 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors develop in detail the theory of (almost) c-projective geometry, a natural analogue of projective differential geometry adapted to (almost) complex manifolds. The authors realise it as a type of parabolic geometry and describe the associated Cartan or tractor connection. A Kähler manifold gives rise to a c-projective structure and this is one of the primary motivations for its study. The existence of two or more Kähler metrics underlying a given c-projective structure has many ramifications, which the authors explore in depth. As a consequence of this analysis, they prove the Yano–Obata Conjecture for complete Kähler manifolds: if such a manifold admits a one parameter group of c-projective transformations that are not affine, then it is complex projective space, equipped with a multiple of the Fubini-Study metric.