Advancement of Deep Learning and its Applications in Object Detection and Recognition

Download Advancement of Deep Learning and its Applications in Object Detection and Recognition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000880419
Total Pages : 319 pages
Book Rating : 4.0/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Advancement of Deep Learning and its Applications in Object Detection and Recognition by : Roohie Naaz Mir

Download or read book Advancement of Deep Learning and its Applications in Object Detection and Recognition written by Roohie Naaz Mir and published by CRC Press. This book was released on 2023-05-10 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: Object detection is a basic visual identification problem in computer vision that has been explored extensively over the years. Visual object detection seeks to discover objects of specific target classes in a given image with pinpoint accuracy and apply a class label to each object instance. Object recognition strategies based on deep learning have been intensively investigated in recent years as a result of the remarkable success of deep learning-based image categorization. In this book, we go through in detail detector architectures, feature learning, proposal generation, sampling strategies, and other issues that affect detection performance. The book describes every newly proposed novel solution but skips through the fundamentals so that readers can see the field's cutting edge more rapidly. Moreover, unlike prior object detection publications, this project analyses deep learning-based object identification methods systematically and exhaustively, and also gives the most recent detection solutions and a collection of noteworthy research trends. The book focuses primarily on step-by-step discussion, an extensive literature review, detailed analysis and discussion, and rigorous experimentation results. Furthermore, a practical approach is displayed and encouraged.

Deep Learning for Computer Vision

Download Deep Learning for Computer Vision PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 564 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Computer Vision by : Jason Brownlee

Download or read book Deep Learning for Computer Vision written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2019-04-04 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

Deep Learning for Image Processing Applications

Download Deep Learning for Image Processing Applications PDF Online Free

Author :
Publisher : IOS Press
ISBN 13 : 1614998221
Total Pages : 284 pages
Book Rating : 4.6/5 (149 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Image Processing Applications by : D.J. Hemanth

Download or read book Deep Learning for Image Processing Applications written by D.J. Hemanth and published by IOS Press. This book was released on 2017-12 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning and image processing are two areas of great interest to academics and industry professionals alike. The areas of application of these two disciplines range widely, encompassing fields such as medicine, robotics, and security and surveillance. The aim of this book, ‘Deep Learning for Image Processing Applications’, is to offer concepts from these two areas in the same platform, and the book brings together the shared ideas of professionals from academia and research about problems and solutions relating to the multifaceted aspects of the two disciplines. The first chapter provides an introduction to deep learning, and serves as the basis for much of what follows in the subsequent chapters, which cover subjects including: the application of deep neural networks for image classification; hand gesture recognition in robotics; deep learning techniques for image retrieval; disease detection using deep learning techniques; and the comparative analysis of deep data and big data. The book will be of interest to all those whose work involves the use of deep learning and image processing techniques.

Deep Learning Applications, Volume 2

Download Deep Learning Applications, Volume 2 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9789811567582
Total Pages : 300 pages
Book Rating : 4.5/5 (675 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Applications, Volume 2 by : M. Arif Wani

Download or read book Deep Learning Applications, Volume 2 written by M. Arif Wani and published by Springer. This book was released on 2020-12-14 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected papers from the 18th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA 2019). It focuses on deep learning networks and their application in domains such as healthcare, security and threat detection, fault diagnosis and accident analysis, and robotic control in industrial environments, and highlights novel ways of using deep neural networks to solve real-world problems. Also offering insights into deep learning architectures and algorithms, it is an essential reference guide for academic researchers, professionals, software engineers in industry, and innovative product developers.

Computer Vision In Medical Imaging

Download Computer Vision In Medical Imaging PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814460958
Total Pages : 410 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision In Medical Imaging by : Chi Hau Chen

Download or read book Computer Vision In Medical Imaging written by Chi Hau Chen and published by World Scientific. This book was released on 2013-11-18 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.

Computer Vision Applications

Download Computer Vision Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811513872
Total Pages : 138 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision Applications by : Chetan Arora

Download or read book Computer Vision Applications written by Chetan Arora and published by Springer Nature. This book was released on 2019-11-14 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the third Workshop on Computer Vision Applications, WCVA 2018, held in Conjunction with ICVGIP 2018, in Hyderabad, India, in December 2018. The 10 revised full papers presented were carefully reviewed and selected from 32 submissions. The papers focus on computer vision; industrial applications; medical applications; and social applications.

Practical Machine Learning and Image Processing

Download Practical Machine Learning and Image Processing PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484241495
Total Pages : 177 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Practical Machine Learning and Image Processing by : Himanshu Singh

Download or read book Practical Machine Learning and Image Processing written by Himanshu Singh and published by Apress. This book was released on 2019-02-26 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gain insights into image-processing methodologies and algorithms, using machine learning and neural networks in Python. This book begins with the environment setup, understanding basic image-processing terminology, and exploring Python concepts that will be useful for implementing the algorithms discussed in the book. You will then cover all the core image processing algorithms in detail before moving onto the biggest computer vision library: OpenCV. You’ll see the OpenCV algorithms and how to use them for image processing. The next section looks at advanced machine learning and deep learning methods for image processing and classification. You’ll work with concepts such as pulse coupled neural networks, AdaBoost, XG boost, and convolutional neural networks for image-specific applications. Later you’ll explore how models are made in real time and then deployed using various DevOps tools. All the concepts in Practical Machine Learning and Image Processing are explained using real-life scenarios. After reading this book you will be able to apply image processing techniques and make machine learning models for customized application. What You Will LearnDiscover image-processing algorithms and their applications using Python Explore image processing using the OpenCV library Use TensorFlow, scikit-learn, NumPy, and other libraries Work with machine learning and deep learning algorithms for image processing Apply image-processing techniques to five real-time projects Who This Book Is For Data scientists and software developers interested in image processing and computer vision.

Deep Learning in Computer Vision

Download Deep Learning in Computer Vision PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351003801
Total Pages : 275 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Computer Vision by : Mahmoud Hassaballah

Download or read book Deep Learning in Computer Vision written by Mahmoud Hassaballah and published by CRC Press. This book was released on 2020-03-23 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

Handbook of Deep Learning in Biomedical Engineering

Download Handbook of Deep Learning in Biomedical Engineering PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128230479
Total Pages : 322 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Deep Learning in Biomedical Engineering by : Valentina Emilia Balas

Download or read book Handbook of Deep Learning in Biomedical Engineering written by Valentina Emilia Balas and published by Academic Press. This book was released on 2020-11-12 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning (DL) is a method of machine learning, running over Artificial Neural Networks, that uses multiple layers to extract high-level features from large amounts of raw data. Deep Learning methods apply levels of learning to transform input data into more abstract and composite information. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications gives readers a complete overview of the essential concepts of Deep Learning and its applications in the field of Biomedical Engineering. Deep learning has been rapidly developed in recent years, in terms of both methodological constructs and practical applications. Deep Learning provides computational models of multiple processing layers to learn and represent data with higher levels of abstraction. It is able to implicitly capture intricate structures of large-scale data and is ideally suited to many of the hardware architectures that are currently available. The ever-expanding amount of data that can be gathered through biomedical and clinical information sensing devices necessitates the development of machine learning and AI techniques such as Deep Learning and Convolutional Neural Networks to process and evaluate the data. Some examples of biomedical and clinical sensing devices that use Deep Learning include: Computed Tomography (CT), Magnetic Resonance Imaging (MRI), Ultrasound, Single Photon Emission Computed Tomography (SPECT), Positron Emission Tomography (PET), Magnetic Particle Imaging, EE/MEG, Optical Microscopy and Tomography, Photoacoustic Tomography, Electron Tomography, and Atomic Force Microscopy. Handbook for Deep Learning in Biomedical Engineering: Techniques and Applications provides the most complete coverage of Deep Learning applications in biomedical engineering available, including detailed real-world applications in areas such as computational neuroscience, neuroimaging, data fusion, medical image processing, neurological disorder diagnosis for diseases such as Alzheimer's, ADHD, and ASD, tumor prediction, as well as translational multimodal imaging analysis. - Presents a comprehensive handbook of the biomedical engineering applications of DL, including computational neuroscience, neuroimaging, time series data such as MRI, functional MRI, CT, EEG, MEG, and data fusion of biomedical imaging data from disparate sources, such as X-Ray/CT - Helps readers understand key concepts in DL applications for biomedical engineering and health care, including manifold learning, classification, clustering, and regression in neuroimaging data analysis - Provides readers with key DL development techniques such as creation of algorithms and application of DL through artificial neural networks and convolutional neural networks - Includes coverage of key application areas of DL such as early diagnosis of specific diseases such as Alzheimer's, ADHD, and ASD, and tumor prediction through MRI and translational multimodality imaging and biomedical applications such as detection, diagnostic analysis, quantitative measurements, and image guidance of ultrasonography

Deep Learning in Object Detection and Recognition

Download Deep Learning in Object Detection and Recognition PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9789811506512
Total Pages : 0 pages
Book Rating : 4.5/5 (65 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Object Detection and Recognition by : Xiaoyue Jiang

Download or read book Deep Learning in Object Detection and Recognition written by Xiaoyue Jiang and published by Springer. This book was released on 2020-11-27 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses recent advances in object detection and recognition using deep learning methods, which have achieved great success in the field of computer vision and image processing. It provides a systematic and methodical overview of the latest developments in deep learning theory and its applications to computer vision, illustrating them using key topics, including object detection, face analysis, 3D object recognition, and image retrieval. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in deep learning, computer vision and beyond and can also be used as a reference book. The comprehensive comparison of various deep-learning applications helps readers with a basic understanding of machine learning and calculus grasp the theories and inspires applications in other computer vision tasks.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9781601988140
Total Pages : 212 pages
Book Rating : 4.9/5 (881 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Li Deng

Download or read book Deep Learning written by Li Deng and published by . This book was released on 2014 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks

Introduction to Deep Learning

Download Introduction to Deep Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319730045
Total Pages : 196 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Deep Learning by : Sandro Skansi

Download or read book Introduction to Deep Learning written by Sandro Skansi and published by Springer. This book was released on 2018-02-04 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.

Applications of Machine Learning

Download Applications of Machine Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811533571
Total Pages : 404 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Applications of Machine Learning by : Prashant Johri

Download or read book Applications of Machine Learning written by Prashant Johri and published by Springer Nature. This book was released on 2020-05-04 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers applications of machine learning in artificial intelligence. The specific topics covered include human language, heterogeneous and streaming data, unmanned systems, neural information processing, marketing and the social sciences, bioinformatics and robotics, etc. It also provides a broad range of techniques that can be successfully applied and adopted in different areas. Accordingly, the book offers an interesting and insightful read for scholars in the areas of computer vision, speech recognition, healthcare, business, marketing, and bioinformatics.

Internet of Things-Based Machine Learning in Healthcare

Download Internet of Things-Based Machine Learning in Healthcare PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1040031854
Total Pages : 242 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Internet of Things-Based Machine Learning in Healthcare by : Prasenjit Dey

Download or read book Internet of Things-Based Machine Learning in Healthcare written by Prasenjit Dey and published by CRC Press. This book was released on 2024-06-10 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Internet of Medical Things (IoMT) is a system that collects data from patients with the help of different sensory inputs, e.g., an accelerometer, electrocardiography, and electroencephalography. This text presents both theoretical and practical concepts related to the application of machine learning and Internet of Things (IoT) algorithms in analyzing data generated through healthcare systems. Illustrates the latest technologies in the healthcare domain and the Internet of Things infrastructure for storing smart electronic health records Focuses on the importance of machine learning algorithms and the significance of Internet of Things infrastructure for healthcare systems Showcases the application of fog computing architecture and edge computing in novel aspects of modern healthcare services Discusses unsupervised genetic algorithm-based automatic heart disease prediction Covers Internet of Things–based hardware mechanisms and machine learning algorithms to predict the stress level of patients The text is primarily written for graduate students and academic researchers in the fields of computer science and engineering, biomedical engineering, electrical engineering, and information technology.

Image Fusion

Download Image Fusion PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811548676
Total Pages : 415 pages
Book Rating : 4.8/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Image Fusion by : Gang Xiao

Download or read book Image Fusion written by Gang Xiao and published by Springer Nature. This book was released on 2020-08-31 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically discusses the basic concepts, theories, research and latest trends in image fusion. It focuses on three image fusion categories – pixel, feature and decision – presenting various applications, such as medical imaging, remote sensing, night vision, robotics and autonomous vehicles. Further, it introduces readers to a new category: edge-preserving-based image fusion, and provides an overview of image fusion based on machine learning and deep learning. As such, it is a valuable resource for graduate students and scientists in the field of digital image processing and information fusion.

Deep Learning in Medical Image Analysis

Download Deep Learning in Medical Image Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030331288
Total Pages : 184 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Medical Image Analysis by : Gobert Lee

Download or read book Deep Learning in Medical Image Analysis written by Gobert Lee and published by Springer Nature. This book was released on 2020-02-06 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.

Strengthening Deep Neural Networks

Download Strengthening Deep Neural Networks PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492044903
Total Pages : 233 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Strengthening Deep Neural Networks by : Katy Warr

Download or read book Strengthening Deep Neural Networks written by Katy Warr and published by "O'Reilly Media, Inc.". This book was released on 2019-07-03 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: As deep neural networks (DNNs) become increasingly common in real-world applications, the potential to deliberately "fool" them with data that wouldn’t trick a human presents a new attack vector. This practical book examines real-world scenarios where DNNs—the algorithms intrinsic to much of AI—are used daily to process image, audio, and video data. Author Katy Warr considers attack motivations, the risks posed by this adversarial input, and methods for increasing AI robustness to these attacks. If you’re a data scientist developing DNN algorithms, a security architect interested in how to make AI systems more resilient to attack, or someone fascinated by the differences between artificial and biological perception, this book is for you. Delve into DNNs and discover how they could be tricked by adversarial input Investigate methods used to generate adversarial input capable of fooling DNNs Explore real-world scenarios and model the adversarial threat Evaluate neural network robustness; learn methods to increase resilience of AI systems to adversarial data Examine some ways in which AI might become better at mimicking human perception in years to come