Advanced Methods and Deep Learning in Computer Vision

Download Advanced Methods and Deep Learning in Computer Vision PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128221496
Total Pages : 584 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Advanced Methods and Deep Learning in Computer Vision by : E. R. Davies

Download or read book Advanced Methods and Deep Learning in Computer Vision written by E. R. Davies and published by Academic Press. This book was released on 2021-11-09 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced Methods and Deep Learning in Computer Vision presents advanced computer vision methods, emphasizing machine and deep learning techniques that have emerged during the past 5–10 years. The book provides clear explanations of principles and algorithms supported with applications. Topics covered include machine learning, deep learning networks, generative adversarial networks, deep reinforcement learning, self-supervised learning, extraction of robust features, object detection, semantic segmentation, linguistic descriptions of images, visual search, visual tracking, 3D shape retrieval, image inpainting, novelty and anomaly detection. This book provides easy learning for researchers and practitioners of advanced computer vision methods, but it is also suitable as a textbook for a second course on computer vision and deep learning for advanced undergraduates and graduate students. Provides an important reference on deep learning and advanced computer methods that was created by leaders in the field Illustrates principles with modern, real-world applications Suitable for self-learning or as a text for graduate courses

Deep Learning for Computer Vision

Download Deep Learning for Computer Vision PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788293355
Total Pages : 304 pages
Book Rating : 4.7/5 (882 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Computer Vision by : Rajalingappaa Shanmugamani

Download or read book Deep Learning for Computer Vision written by Rajalingappaa Shanmugamani and published by Packt Publishing Ltd. This book was released on 2018-01-23 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to model and train advanced neural networks to implement a variety of Computer Vision tasks Key Features Train different kinds of deep learning model from scratch to solve specific problems in Computer Vision Combine the power of Python, Keras, and TensorFlow to build deep learning models for object detection, image classification, similarity learning, image captioning, and more Includes tips on optimizing and improving the performance of your models under various constraints Book Description Deep learning has shown its power in several application areas of Artificial Intelligence, especially in Computer Vision. Computer Vision is the science of understanding and manipulating images, and finds enormous applications in the areas of robotics, automation, and so on. This book will also show you, with practical examples, how to develop Computer Vision applications by leveraging the power of deep learning. In this book, you will learn different techniques related to object classification, object detection, image segmentation, captioning, image generation, face analysis, and more. You will also explore their applications using popular Python libraries such as TensorFlow and Keras. This book will help you master state-of-the-art, deep learning algorithms and their implementation. What you will learn Set up an environment for deep learning with Python, TensorFlow, and Keras Define and train a model for image and video classification Use features from a pre-trained Convolutional Neural Network model for image retrieval Understand and implement object detection using the real-world Pedestrian Detection scenario Learn about various problems in image captioning and how to overcome them by training images and text together Implement similarity matching and train a model for face recognition Understand the concept of generative models and use them for image generation Deploy your deep learning models and optimize them for high performance Who this book is for This book is targeted at data scientists and Computer Vision practitioners who wish to apply the concepts of Deep Learning to overcome any problem related to Computer Vision. A basic knowledge of programming in Python—and some understanding of machine learning concepts—is required to get the best out of this book.

Computer Vision

Download Computer Vision PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107011795
Total Pages : 599 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision by : Simon J. D. Prince

Download or read book Computer Vision written by Simon J. D. Prince and published by Cambridge University Press. This book was released on 2012-06-18 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.

Deep Learning in Computer Vision

Download Deep Learning in Computer Vision PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 135100381X
Total Pages : 322 pages
Book Rating : 4.3/5 (51 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning in Computer Vision by : Mahmoud Hassaballah

Download or read book Deep Learning in Computer Vision written by Mahmoud Hassaballah and published by CRC Press. This book was released on 2020-03-23 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.

Mastering Computer Vision with TensorFlow 2.x

Download Mastering Computer Vision with TensorFlow 2.x PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838826939
Total Pages : 419 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Mastering Computer Vision with TensorFlow 2.x by : Krishnendu Kar

Download or read book Mastering Computer Vision with TensorFlow 2.x written by Krishnendu Kar and published by Packt Publishing Ltd. This book was released on 2020-05-15 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Apply neural network architectures to build state-of-the-art computer vision applications using the Python programming language Key FeaturesGain a fundamental understanding of advanced computer vision and neural network models in use todayCover tasks such as low-level vision, image classification, and object detectionDevelop deep learning models on cloud platforms and optimize them using TensorFlow Lite and the OpenVINO toolkitBook Description Computer vision allows machines to gain human-level understanding to visualize, process, and analyze images and videos. This book focuses on using TensorFlow to help you learn advanced computer vision tasks such as image acquisition, processing, and analysis. You'll start with the key principles of computer vision and deep learning to build a solid foundation, before covering neural network architectures and understanding how they work rather than using them as a black box. Next, you'll explore architectures such as VGG, ResNet, Inception, R-CNN, SSD, YOLO, and MobileNet. As you advance, you'll learn to use visual search methods using transfer learning. You'll also cover advanced computer vision concepts such as semantic segmentation, image inpainting with GAN's, object tracking, video segmentation, and action recognition. Later, the book focuses on how machine learning and deep learning concepts can be used to perform tasks such as edge detection and face recognition. You'll then discover how to develop powerful neural network models on your PC and on various cloud platforms. Finally, you'll learn to perform model optimization methods to deploy models on edge devices for real-time inference. By the end of this book, you'll have a solid understanding of computer vision and be able to confidently develop models to automate tasks. What you will learnExplore methods of feature extraction and image retrieval and visualize different layers of the neural network modelUse TensorFlow for various visual search methods for real-world scenariosBuild neural networks or adjust parameters to optimize the performance of modelsUnderstand TensorFlow DeepLab to perform semantic segmentation on images and DCGAN for image inpaintingEvaluate your model and optimize and integrate it into your application to operate at scaleGet up to speed with techniques for performing manual and automated image annotationWho this book is for This book is for computer vision professionals, image processing professionals, machine learning engineers and AI developers who have some knowledge of machine learning and deep learning and want to build expert-level computer vision applications. In addition to familiarity with TensorFlow, Python knowledge will be required to get started with this book.

Deep Learning for Computer Vision

Download Deep Learning for Computer Vision PDF Online Free

Author :
Publisher : Machine Learning Mastery
ISBN 13 :
Total Pages : 564 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Computer Vision by : Jason Brownlee

Download or read book Deep Learning for Computer Vision written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2019-04-04 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: Step-by-step tutorials on deep learning neural networks for computer vision in python with Keras.

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Modern Deep Learning and Advanced Computer Vision

Download Modern Deep Learning and Advanced Computer Vision PDF Online Free

Author :
Publisher :
ISBN 13 : 9781708798642
Total Pages : 531 pages
Book Rating : 4.7/5 (986 download)

DOWNLOAD NOW!


Book Synopsis Modern Deep Learning and Advanced Computer Vision by : J. Nedumaan

Download or read book Modern Deep Learning and Advanced Computer Vision written by J. Nedumaan and published by . This book was released on 2019-12-08 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer vision has enormous progress in modern times. Deep learning has driven and inferred a range of computer vision problems, such as object detection and recognition, face detection and recognition, motion tracking and estimation, transfer learning, action recognition, image segmentation, semantic segmentation, robotic vision. The chapters in this book are persuaded towards the applications of advanced computer vision using modern deep learning techniques. The authors trust in making the readers with more interesting illustrations in understanding the concepts of deep learning and computer vision at a simpler perspective approach.

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262337371
Total Pages : 801 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Ian Goodfellow

Download or read book Deep Learning written by Ian Goodfellow and published by MIT Press. This book was released on 2016-11-10 with total page 801 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. “Written by three experts in the field, Deep Learning is the only comprehensive book on the subject.” —Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Multi-faceted Deep Learning

Download Multi-faceted Deep Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030744787
Total Pages : 321 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Multi-faceted Deep Learning by : Jenny Benois-Pineau

Download or read book Multi-faceted Deep Learning written by Jenny Benois-Pineau and published by Springer Nature. This book was released on 2021-10-20 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a large set of methods in the field of Artificial Intelligence - Deep Learning applied to real-world problems. The fundamentals of the Deep Learning approach and different types of Deep Neural Networks (DNNs) are first summarized in this book, which offers a comprehensive preamble for further problem–oriented chapters. The most interesting and open problems of machine learning in the framework of Deep Learning are discussed in this book and solutions are proposed. This book illustrates how to implement the zero-shot learning with Deep Neural Network Classifiers, which require a large amount of training data. The lack of annotated training data naturally pushes the researchers to implement low supervision algorithms. Metric learning is a long-term research but in the framework of Deep Learning approaches, it gets freshness and originality. Fine-grained classification with a low inter-class variability is a difficult problem for any classification tasks. This book presents how it is solved, by using different modalities and attention mechanisms in 3D convolutional networks. Researchers focused on Machine Learning, Deep learning, Multimedia and Computer Vision will want to buy this book. Advanced level students studying computer science within these topic areas will also find this book useful.

Computer Vision in Medical Imaging

Download Computer Vision in Medical Imaging PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814460958
Total Pages : 412 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Computer Vision in Medical Imaging by : C H Chen

Download or read book Computer Vision in Medical Imaging written by C H Chen and published by World Scientific. This book was released on 2013-11-18 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs. Contents:An Introduction to Computer Vision in Medical Imaging (Chi Hau Chen)Theory and Methodologies:Distribution Matching Approaches to Medical Image Segmentation (Ismail Ben Ayed)Digital Pathology in Medical Imaging (Bikash Sabata, Chukka Srinivas, Pascal Bamford and Gerardo Fernandez)Adaptive Shape Prior Modeling via Online Dictionary Learning (Shaoting Zhang, Yiqiang Zhan, Yan Zhou and Dimitris Metaxas)Feature-Centric Lesion Detection and Retrieval in Thoracic Images (Yang Song, Weidong Cai, Stefan Eberl, Michael J Fulham and David Dagan Feng)A Novel Paradigm for Quantitation from MR Phase (Joseph Dagher)A Multi-Resolution Active Contour Framework for Ultrasound Image Segmentation (Weiming Wang, Jing Qin, Pheng-Ann Heng, Yim-Pan Chui, Liang Li and Bing Nan Li)2D, 3D Reconstructions/Imaging Algorithms, Systems & Sensor Fusion:Model-Based Image Reconstruction in Optoacoustic Tomography (Amir Rosenthal, Daniel Razansky and Vasilis Ntziachristos)The Fusion of Three-Dimensional Quantitative Coronary Angiography and Intracoronary Imaging for Coronary Interventions (Shengxian Tu, Niels R Holm, Johannes P Janssen and Johan H C Reiber)Three-Dimensional Reconstruction Methods in Near-Field Coded Aperture for SPECT Imaging System (Stephen Baoming Hong)Ultrasound Volume Reconstruction based on Direct Frame Interpolation (Sergei Koptenko, Rachel Remlinger, Martin Lachaine, Tony Falco and Ulrich Scheipers)Deconvolution Technique for Enhancing and Classifying the Retinal Images (Uvais A Qidwai and Umair A Qidwai)Medical Ultrasound Digital Signal Processing in the GPU Computing Era (Marcin Lewandowski)Developing Medical Image Processing Algorithms for GPU Assisted Parallel Computation (Mathias Broxvall and Marios Daotis)Specific Image Processing and Computer Vision Methods for Different Imaging Modalities Including IVUS, MRI, etc.:Computer Vision in Interventional Cardiology (Kendall R Waters)Pattern Classification of Brain Diffusion MRI: Application to Schizophrenia Diagnosis (Ali Tabesh, Matthew J Hoptman, Debra D'Angelo and Babak A Ardekani)On Compressed Sensing Reconstruction for Magnetic Resonance Imaging (Benjamin Paul Berman, Sagar Mandava and Ali Bilgin)On Hierarchical Statistical Shape Models with Application to Brain MRI (Juan J Cerrolaza, Arantxa Villanueva and Rafael Cabeza)Advanced PDE-based Methods for Automatic Quantification of Cardiac Function and Scar from Magnetic Resonance Imaging (Durco Turco and Cristiana Corsi)Automated IVUS Segmentation Using Deformable Template Model with Feature Tracking (Prakash Manandhar and Chi Hau Chen) Readership: Researchers, professionals and academics in machine perception/computer vision, pattern recognition/image analysis, nuclear medicine, bioengineering & cardiology. Keywords:Medical Imaging;Computer Vision;Image Segmentation;Machine Learning;3D InformationKey Features:Uses computer vision techniques for medical imaging dataCovers image processing and segmentation algorithms in intravascular ultrasound, PETscan data, MRI dataEmphaisises 3D information extraction from medical imaging data

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : Rob Botwright
ISBN 13 : 1839386258
Total Pages : 261 pages
Book Rating : 4.8/5 (393 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : Rob Botwright

Download or read book Deep Learning written by Rob Botwright and published by Rob Botwright. This book was released on 101-01-01 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introducing the Ultimate AI Book Bundle: Deep Learning, Computer Vision, Python Machine Learning, and Neural Networks Are you ready to embark on an exhilarating journey into the world of artificial intelligence, deep learning, and computer vision? Look no further! Our carefully curated book bundle, "DEEP LEARNING: COMPUTER VISION, PYTHON MACHINE LEARNING AND NEURAL NETWORKS," offers you a comprehensive roadmap to AI mastery. BOOK 1 - DEEP LEARNING DEMYSTIFIED: A BEGINNER'S GUIDE 🚀 Perfect for beginners, this book dismantles the complexities of deep learning. From neural networks to Python programming, you'll build a strong foundation in AI. BOOK 2 - MASTERING COMPUTER VISION WITH DEEP LEARNING 🌟 Dive into the captivating world of computer vision. Unlock the secrets of image processing, convolutional neural networks (CNNs), and object recognition. Harness the power of visual intelligence! BOOK 3 - PYTHON MACHINE LEARNING AND NEURAL NETWORKS: FROM NOVICE TO PRO 📊 Elevate your skills with this intermediate volume. Delve into data preprocessing, supervised and unsupervised learning, and become proficient in training neural networks. BOOK 4 - ADVANCED DEEP LEARNING: CUTTING-EDGE TECHNIQUES AND APPLICATIONS 🔥 Ready to conquer advanced techniques? Learn optimization strategies, tackle common deep learning challenges, and explore real-world applications shaping the future. 🎉 What You'll Gain: · A strong foundation in deep learning · Proficiency in computer vision · Mastery of Python machine learning · Advanced deep learning skills · Real-world application knowledge · Cutting-edge AI insights 📚 Why Choose Our Book Bundle? · Expertly curated content · Beginner to expert progression · Clear explanations and hands-on examples · Comprehensive coverage of AI topics · Practical real-world applications · Stay ahead with emerging AI trends 🌐 Who Should Grab This Bundle? · Beginners eager to start their AI journey · Intermediate learners looking to expand their skill set · Experts seeking advanced deep learning insights · Anyone curious about AI's limitless possibilities 📦 Limited-Time Offer: Get all four books in one bundle and save! Don't miss this chance to accelerate your AI knowledge and skills. 🔒 Secure Your AI Mastery: Click "Add to Cart" now and embark on an educational adventure that will redefine your understanding of artificial intelligence. Your journey to AI excellence begins here!

Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images

Download Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3036509860
Total Pages : 438 pages
Book Rating : 4.0/5 (365 download)

DOWNLOAD NOW!


Book Synopsis Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images by : Yakoub Bazi

Download or read book Advanced Deep Learning Strategies for the Analysis of Remote Sensing Images written by Yakoub Bazi and published by MDPI. This book was released on 2021-06-15 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: The rapid growth of the world population has resulted in an exponential expansion of both urban and agricultural areas. Identifying and managing such earthly changes in an automatic way poses a worth-addressing challenge, in which remote sensing technology can have a fundamental role to answer—at least partially—such demands. The recent advent of cutting-edge processing facilities has fostered the adoption of deep learning architectures owing to their generalization capabilities. In this respect, it seems evident that the pace of deep learning in the remote sensing domain remains somewhat lagging behind that of its computer vision counterpart. This is due to the scarce availability of ground truth information in comparison with other computer vision domains. In this book, we aim at advancing the state of the art in linking deep learning methodologies with remote sensing image processing by collecting 20 contributions from different worldwide scientists and laboratories. The book presents a wide range of methodological advancements in the deep learning field that come with different applications in the remote sensing landscape such as wildfire and postdisaster damage detection, urban forest mapping, vine disease and pavement marking detection, desert road mapping, road and building outline extraction, vehicle and vessel detection, water identification, and text-to-image matching.

Machine Learning in Computer Vision

Download Machine Learning in Computer Vision PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402032757
Total Pages : 242 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Computer Vision by : Nicu Sebe

Download or read book Machine Learning in Computer Vision written by Nicu Sebe and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to address the use of several important machine learning techniques into computer vision applications. An innovative combination of computer vision and machine learning techniques has the promise of advancing the field of computer vision, which contributes to better understanding of complex real-world applications. The effective usage of machine learning technology in real-world computer vision problems requires understanding the domain of application, abstraction of a learning problem from a given computer vision task, and the selection of appropriate representations for the learnable (input) and learned (internal) entities of the system. In this book, we address all these important aspects from a new perspective: that the key element in the current computer revolution is the use of machine learning to capture the variations in visual appearance, rather than having the designer of the model accomplish this. As a bonus, models learned from large datasets are likely to be more robust and more realistic than the brittle all-design models.

Advanced Image and Video Processing Using MATLAB

Download Advanced Image and Video Processing Using MATLAB PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319772236
Total Pages : 590 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Advanced Image and Video Processing Using MATLAB by : Shengrong Gong

Download or read book Advanced Image and Video Processing Using MATLAB written by Shengrong Gong and published by Springer. This book was released on 2018-08-21 with total page 590 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive introduction to advanced methods for image and video analysis and processing. It covers deraining, dehazing, inpainting, fusion, watermarking and stitching. It describes techniques for face and lip recognition, facial expression recognition, lip reading in videos, moving object tracking, dynamic scene classification, among others. The book combines the latest machine learning methods with computer vision applications, covering topics such as event recognition based on deep learning,dynamic scene classification based on topic model, person re-identification based on metric learning and behavior analysis. It also offers a systematic introduction to image evaluation criteria showing how to use them in different experimental contexts. The book offers an example-based practical guide to researchers, professionals and graduate students dealing with advanced problems in image analysis and computer vision.

Deep Learning for Vision Systems

Download Deep Learning for Vision Systems PDF Online Free

Author :
Publisher : Manning Publications
ISBN 13 : 1617296198
Total Pages : 478 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Vision Systems by : Mohamed Elgendy

Download or read book Deep Learning for Vision Systems written by Mohamed Elgendy and published by Manning Publications. This book was released on 2020-11-10 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. Summary Computer vision is central to many leading-edge innovations, including self-driving cars, drones, augmented reality, facial recognition, and much, much more. Amazing new computer vision applications are developed every day, thanks to rapid advances in AI and deep learning (DL). Deep Learning for Vision Systems teaches you the concepts and tools for building intelligent, scalable computer vision systems that can identify and react to objects in images, videos, and real life. With author Mohamed Elgendy's expert instruction and illustration of real-world projects, you’ll finally grok state-of-the-art deep learning techniques, so you can build, contribute to, and lead in the exciting realm of computer vision! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology How much has computer vision advanced? One ride in a Tesla is the only answer you’ll need. Deep learning techniques have led to exciting breakthroughs in facial recognition, interactive simulations, and medical imaging, but nothing beats seeing a car respond to real-world stimuli while speeding down the highway. About the book How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. What's inside Image classification and object detection Advanced deep learning architectures Transfer learning and generative adversarial networks DeepDream and neural style transfer Visual embeddings and image search About the reader For intermediate Python programmers. About the author Mohamed Elgendy is the VP of Engineering at Rakuten. A seasoned AI expert, he has previously built and managed AI products at Amazon and Twilio. Table of Contents PART 1 - DEEP LEARNING FOUNDATION 1 Welcome to computer vision 2 Deep learning and neural networks 3 Convolutional neural networks 4 Structuring DL projects and hyperparameter tuning PART 2 - IMAGE CLASSIFICATION AND DETECTION 5 Advanced CNN architectures 6 Transfer learning 7 Object detection with R-CNN, SSD, and YOLO PART 3 - GENERATIVE MODELS AND VISUAL EMBEDDINGS 8 Generative adversarial networks (GANs) 9 DeepDream and neural style transfer 10 Visual embeddings

Principles of Digital Image Processing

Download Principles of Digital Image Processing PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1848829191
Total Pages : 369 pages
Book Rating : 4.8/5 (488 download)

DOWNLOAD NOW!


Book Synopsis Principles of Digital Image Processing by : Wilhelm Burger

Download or read book Principles of Digital Image Processing written by Wilhelm Burger and published by Springer Science & Business Media. This book was released on 2013-11-18 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is the third of three volumes which provide a modern, algorithmic introduction to digital image processing, designed to be used both by learners desiring a firm foundation on which to build, and practitioners in search of critical analysis and concrete implementations of the most important techniques. This volume builds upon the introductory material presented in the first two volumes with additional key concepts and methods in image processing. Features: practical examples and carefully constructed chapter-ending exercises; real implementations, concise mathematical notation, and precise algorithmic descriptions designed for programmers and practitioners; easily adaptable Java code and completely worked-out examples for easy inclusion in existing applications; uses ImageJ; provides a supplementary website with the complete Java source code, test images, and corrections; additional presentation tools for instructors including a complete set of figures, tables, and mathematical elements.