Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Advanced Differential Quadrature Methods
Download Advanced Differential Quadrature Methods full books in PDF, epub, and Kindle. Read online Advanced Differential Quadrature Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Advanced Differential Quadrature Methods by : Zhi Zong
Download or read book Advanced Differential Quadrature Methods written by Zhi Zong and published by CRC Press. This book was released on 2009-01-20 with total page 363 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Tools to Perform Numerical DifferentiationThe original direct differential quadrature (DQ) method has been known to fail for problems with strong nonlinearity and material discontinuity as well as for problems involving singularity, irregularity, and multiple scales. But now researchers in applied mathematics, computational mechanics, and en
Book Synopsis Advanced Numerical and Semi-Analytical Methods for Differential Equations by : Snehashish Chakraverty
Download or read book Advanced Numerical and Semi-Analytical Methods for Differential Equations written by Snehashish Chakraverty and published by John Wiley & Sons. This book was released on 2019-03-20 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines numerical and semi-analytical methods for differential equations that can be used for solving practical ODEs and PDEs This student-friendly book deals with various approaches for solving differential equations numerically or semi-analytically depending on the type of equations and offers simple example problems to help readers along. Featuring both traditional and recent methods, Advanced Numerical and Semi Analytical Methods for Differential Equations begins with a review of basic numerical methods. It then looks at Laplace, Fourier, and weighted residual methods for solving differential equations. A new challenging method of Boundary Characteristics Orthogonal Polynomials (BCOPs) is introduced next. The book then discusses Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM), and Boundary Element Method (BEM). Following that, analytical/semi analytic methods like Akbari Ganji's Method (AGM) and Exp-function are used to solve nonlinear differential equations. Nonlinear differential equations using semi-analytical methods are also addressed, namely Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM), and Homotopy Analysis Method (HAM). Other topics covered include: emerging areas of research related to the solution of differential equations based on differential quadrature and wavelet approach; combined and hybrid methods for solving differential equations; as well as an overview of fractal differential equations. Further, uncertainty in term of intervals and fuzzy numbers have also been included, along with the interval finite element method. This book: Discusses various methods for solving linear and nonlinear ODEs and PDEs Covers basic numerical techniques for solving differential equations along with various discretization methods Investigates nonlinear differential equations using semi-analytical methods Examines differential equations in an uncertain environment Includes a new scenario in which uncertainty (in term of intervals and fuzzy numbers) has been included in differential equations Contains solved example problems, as well as some unsolved problems for self-validation of the topics covered Advanced Numerical and Semi Analytical Methods for Differential Equations is an excellent text for graduate as well as post graduate students and researchers studying various methods for solving differential equations, numerically and semi-analytically.
Book Synopsis Differential Quadrature and Its Application in Engineering by : Chang Shu
Download or read book Differential Quadrature and Its Application in Engineering written by Chang Shu and published by Springer Science & Business Media. This book was released on 2000-01-14 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past few years, the differential quadrature method has been applied extensively in engineering. This book, aimed primarily at practising engineers, scientists and graduate students, gives a systematic description of the mathematical fundamentals of differential quadrature and its detailed implementation in solving Helmholtz problems and problems of flow, structure and vibration. Differential quadrature provides a global approach to numerical discretization, which approximates the derivatives by a linear weighted sum of all the functional values in the whole domain. Following the analysis of function approximation and the analysis of a linear vector space, it is shown in the book that the weighting coefficients of the polynomial-based, Fourier expansion-based, and exponential-based differential quadrature methods can be computed explicitly. It is also demonstrated that the polynomial-based differential quadrature method is equivalent to the highest-order finite difference scheme. Furthermore, the relationship between differential quadrature and conventional spectral collocation is analysed. The book contains material on: - Linear Vector Space Analysis and the Approximation of a Function; - Polynomial-, Fourier Expansion- and Exponential-based Differential Quadrature; - Differential Quadrature Weighting Coefficient Matrices; - Solution of Differential Quadrature-resultant Equations; - The Solution of Incompressible Navier-Stokes and Helmholtz Equations; - Structural and Vibrational Analysis Applications; - Generalized Integral Quadrature and its Application in the Solution of Boundary Layer Equations. Three FORTRAN programs for simulation of driven cavity flow, vibration analysis of plate and Helmholtz eigenvalue problems respectively, are appended. These sample programs should give the reader a better understanding of differential quadrature and can easily be modified to solve the readers own engineering problems.
Book Synopsis Generalized Differential and Integral Quadrature by : Francesco Tornabene
Download or read book Generalized Differential and Integral Quadrature written by Francesco Tornabene and published by Società Editrice Esculapio. This book was released on 2023-10-17 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main aim of this book is to analyze the mathematical fundamentals and the main features of the Generalized Differential Quadrature (GDQ) and Generalized Integral Quadrature (GIQ) techniques. Furthermore, another interesting aim of the present book is to shown that from the two numerical techniques mentioned above it is possible to derive two different approaches such as the Strong and Weak Finite Element Methods (SFEM and WFEM), that will be used to solve various structural problems and arbitrarily shaped structures. A general approach to the Differential Quadrature is proposed. The weighting coefficients for different basis functions and grid distributions are determined. Furthermore, the expressions of the principal approximating polynomials and grid distributions, available in the literature, are shown. Besides the classic orthogonal polynomials, a new class of basis functions, which depend on the radial distance between the discretization points, is presented. They are known as Radial Basis Functions (or RBFs). The general expressions for the derivative evaluation can be utilized in the local form to reduce the computational cost. From this concept the Local Generalized Differential Quadrature (LGDQ) method is derived. The Generalized Integral Quadrature (GIQ) technique can be used employing several basis functions, without any restriction on the point distributions for the given definition domain. To better underline these concepts some classical numerical integration schemes are reported, such as the trapezoidal rule or the Simpson method. An alternative approach based on Taylor series is also illustrated to approximate integrals. This technique is named as Generalized Taylor-based Integral Quadrature (GTIQ) method. The major structural theories for the analysis of the mechanical behavior of various structures are presented in depth in the book. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. Generally speaking, two formulations of the same system of governing equations can be developed, which are respectively the strong and weak (or variational) formulations. Once the governing equations that rule a generic structural problem are obtained, together with the corresponding boundary conditions, a differential system is written. In particular, the Strong Formulation (SF) of the governing equations is obtained. The differentiability requirement, instead, is reduced through a weighted integral statement if the corresponding Weak Formulation (WF) of the governing equations is developed. Thus, an equivalent integral formulation is derived, starting directly from the previous one. In particular, the formulation in hand is obtained by introducing a Lagrangian approximation of the degrees of freedom of the problem. The need of studying arbitrarily shaped domains or characterized by mechanical and geometrical discontinuities leads to the development of new numerical approaches that divide the structure in finite elements. Then, the strong form or the weak form of the fundamental equations are solved inside each element. The fundamental aspects of this technique, which the author defined respectively Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are presented in the book.
Book Synopsis Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells by : Francesco Tornabene
Download or read book Hygro-Thermo-Magneto-Electro-Elastic Theory of Anisotropic Doubly-Curved Shells written by Francesco Tornabene and published by Società Editrice Esculapio. This book was released on 2023-10-13 with total page 1073 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for studying the Hygro-Thermo-Magneto-Electro- Elastic Theory of Anisotropic Doubly-Curved Shells. In particular, a general coupled multifield theory regarding anisotropic shell structures is provided. The three-dimensional multifield problem is reduced in a two-dimensional one following the principles of the Equivalent Single Layer (ESL) approach and the Equivalent Layer-Wise (ELW) approach, setting a proper configuration model. According to the adopted configuration assumptions, several Higher-order Shear Deformation Theories (HSDTs) are obtained. Furthermore, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the physical behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are used to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are considered, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. The Theory of Composite Thin Shells is derived in a simple and intuitive manner from the theory of thick and moderately thick shells (First-order Shear Deformation Theory or Reissner- Mindlin Theory). In particular, the Kirchhoff-Love Theory and the Membrane Theory for composite shells are shown. Furthermore, the Theory of Composite Arches and Beams is also exposed. In particular, the equations of the Timoshenko Theory and the Euler-Bernoulli Theory are directly deducted from the equations of singly-curved shells of translation and of plates.
Book Synopsis Wave Dynamics by : Snehashish Chakraverty
Download or read book Wave Dynamics written by Snehashish Chakraverty and published by World Scientific. This book was released on 2022-01-27 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are various types of waves including water, sound, electromagnetic, seismic and shock etc. These waves need to be analyzed and understood for different practical applications. This book is an attempt to consider the waves in detail to understand the physical and mathematical phenomena. A major challenge is to model waves by experimental studies.The aim of this book is to address the efficient and recently developed theories along with the basic equations of wave dynamics. The latest development of analytical/semi analytical and numerical methods with respect to wave dynamics are also covered. Further few challenging experimental studies are considered for related problems. This book presents advances in wave dynamics in simple and easy to follow chapters for the benefit of the readers/researchers.
Book Synopsis Laminated Composite Doubly-Curved Shell Structures by : Francesco Tornabene
Download or read book Laminated Composite Doubly-Curved Shell Structures written by Francesco Tornabene and published by Società Editrice Esculapio. This book was released on 2016-05-17 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: The title, “Laminated Composite Doubly-Curved Shell Structures. Differential and Integral Quadrature. Strong Form Finite Elements” illustrates the theme treated and the prospective followed during the composition of the present work. The aim of this manuscript is to analyze the static and dynamic behavior of thick and moderately thick composite shells through the application of the Differential Quadrature (DQ) method. The book is divided into two volumes wherein the principal higher order structural theories are illustrated in detail and the mechanical behavior of doubly-curved structures are presented by several static and dynamic numerical applications. In particular, the first volume is mainly theoretical, whereas the second one is mainly related to the numerical DQ technique and its applications in the structural field. The numerical results reported in the present volume are compared to the one available in the literature, but also to the ones obtained through several codes based on the Finite Element Method (FEM). Furthermore, an advanced version of the DQ method, termed Strong Formulation Finite Element Method (SFEM), is presented. The SFEM solves the differential equations inside each element in the strong form and implements the mapping technique typical of the FEM.
Book Synopsis Mechanics of laminated Composite doubly-curvel shell structures by : Francesco Tornabene
Download or read book Mechanics of laminated Composite doubly-curvel shell structures written by Francesco Tornabene and published by Società Editrice Esculapio. This book was released on 2014-03-01 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: This manuscript comes from the experience gained over ten years of study and research on shell structures and on the Generalized Differential Quadrature method. The title, Mechanics of Laminated Composite Doubly-Curved Shell Structures, illustrates the theme followed in the present volume. The present study aims to analyze the static and dynamic behavior of moderately thick shells made of composite materials through the application of the Differential Quadrature (DQ) technique. A particular attention is paid, other than fibrous and laminated composites, also to “Functionally Graded Materials” (FGMs). They are non-homogeneous materials, characterized by a continuous variation of the mechanical properties through a particular direction. The GDQ numerical solution is compared, not only with literature results, but also with the ones supplied and obtained through the use of different structural codes based on the Finite Element Method (FEM). Furthermore, an advanced version of GDQ method is also presented. This methodology is termed Strong Formulation Finite Element Method (SFEM) because it employs the strong form of the differential system of equations at the master element level and the mapping technique, proper of FEM. The connectivity between two elements is enforced through compatibility conditions.
Book Synopsis Sinc Methods for Quadrature and Differential Equations by : John Lund
Download or read book Sinc Methods for Quadrature and Differential Equations written by John Lund and published by SIAM. This book was released on 1992-01-01 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Here is an elementary development of the Sinc-Galerkin method with the focal point being ordinary and partial differential equations. This is the first book to explain this powerful computational method for treating differential equations. These methods are an alternative to finite difference and finite element schemes, and are especially adaptable to problems with singular solutions. The text is written to facilitate easy implementation of the theory into operating numerical code. The authors' use of differential equations as a backdrop for the presentation of the material allows them to present a number of the applications of the sinc method. Many of these applications are useful in numerical processes of interest quite independent of differential equations. Specifically, numerical interpolation and quadrature, while fundamental to the Galerkin development, are useful in their own right.
Book Synopsis Nanomaterials for Advanced Technologies by : Jitendra Kumar Katiyar
Download or read book Nanomaterials for Advanced Technologies written by Jitendra Kumar Katiyar and published by Springer Nature. This book was released on 2022-05-24 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents experimental as well as simulation methodologies for analysis and development of nanostructures for introducing the desirable effects through modifications in the basic structure of select nanomaterials. The initial chapters in this book focus on exploring the basic aspects of nanomaterials, e.g., distinguishing features, synthesis, processing, characterization, simulation and application dimensions, or nanostructures that enable novel/enhanced properties or functions. The chapters also cover the size-dependent electronic, optical, and magnetic properties of nanomaterials in exposing the specific properties essential for applications in nanophotonics, nanoplasmonics, nanosystems (e.g., biological, medical, chemical, catalytic, energy, and environmental applications), and nanodevices (e.g., electronic, photonic, magnetic, imaging, diagnostic, and sensor applications). This book is a useful resource for students, researchers, and technologists in gathering recent knowledge on novel nanostructures and their use in different application areas.
Book Synopsis Mathematical Methods in Interdisciplinary Sciences by : Snehashish Chakraverty
Download or read book Mathematical Methods in Interdisciplinary Sciences written by Snehashish Chakraverty and published by John Wiley & Sons. This book was released on 2020-06-15 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brings mathematics to bear on your real-world, scientific problems Mathematical Methods in Interdisciplinary Sciences provides a practical and usable framework for bringing a mathematical approach to modelling real-life scientific and technological problems. The collection of chapters Dr. Snehashish Chakraverty has provided describe in detail how to bring mathematics, statistics, and computational methods to the fore to solve even the most stubborn problems involving the intersection of multiple fields of study. Graduate students, postgraduate students, researchers, and professors will all benefit significantly from the author's clear approach to applied mathematics. The book covers a wide range of interdisciplinary topics in which mathematics can be brought to bear on challenging problems requiring creative solutions. Subjects include: Structural static and vibration problems Heat conduction and diffusion problems Fluid dynamics problems The book also covers topics as diverse as soft computing and machine intelligence. It concludes with examinations of various fields of application, like infectious diseases, autonomous car and monotone inclusion problems.
Book Synopsis Numerical Methods for Solving Partial Differential Equations by : George F. Pinder
Download or read book Numerical Methods for Solving Partial Differential Equations written by George F. Pinder and published by John Wiley & Sons. This book was released on 2018-02-05 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to numerical methods for simulating physical-chemical systems This book offers a systematic, highly accessible presentation of numerical methods used to simulate the behavior of physical-chemical systems. Unlike most books on the subject, it focuses on methodology rather than specific applications. Written for students and professionals across an array of scientific and engineering disciplines and with varying levels of experience with applied mathematics, it provides comprehensive descriptions of numerical methods without requiring an advanced mathematical background. Based on its author’s more than forty years of experience teaching numerical methods to engineering students, Numerical Methods for Solving Partial Differential Equations presents the fundamentals of all of the commonly used numerical methods for solving differential equations at a level appropriate for advanced undergraduates and first-year graduate students in science and engineering. Throughout, elementary examples show how numerical methods are used to solve generic versions of equations that arise in many scientific and engineering disciplines. In writing it, the author took pains to ensure that no assumptions were made about the background discipline of the reader. Covers the spectrum of numerical methods that are used to simulate the behavior of physical-chemical systems that occur in science and engineering Written by a professor of engineering with more than forty years of experience teaching numerical methods to engineers Requires only elementary knowledge of differential equations and matrix algebra to master the material Designed to teach students to understand, appreciate and apply the basic mathematics and equations on which Mathcad and similar commercial software packages are based Comprehensive yet accessible to readers with limited mathematical knowledge, Numerical Methods for Solving Partial Differential Equations is an excellent text for advanced undergraduates and first-year graduate students in the sciences and engineering. It is also a valuable working reference for professionals in engineering, physics, chemistry, computer science, and applied mathematics.
Book Synopsis Advance Numerical Techniques to Solve Linear and Nonlinear Differential Equations by : Geeta Arora
Download or read book Advance Numerical Techniques to Solve Linear and Nonlinear Differential Equations written by Geeta Arora and published by CRC Press. This book was released on 2024-01-23 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: Real-world issues can be translated into the language and concepts of mathematics with the use of mathematical models. Models guided by differential equations with intuitive solutions can be used throughout engineering and the sciences. Almost any changing system may be described by a set of differential equations. They may be found just about anywhere you look in fields including physics, engineering, economics, sociology, biology, business, healthcare, etc. The nature of these equations has been investigated by several mathematicians over the course of hundreds of years and, consequently, numerous effective methods for solving them have been created. It is often impractical to find a purely analytical solution to a system described by a differential equation because either the system itself is too complex or the system being described is too vast. Numerical approaches and computer simulations are especially helpful in such systems. The content provided in this book involves real-world examples, explores research challenges in numerical treatment, and demonstrates how to create new numerical methods for resolving problems. Theories and practical applications in the sciences and engineering are also discussed. Students of engineering and applied mathematics, as well as researchers and engineers who use computers to solve problems numerically or oversee those who do, will find this book focusing on advance numerical techniques to solve linear and nonlinear differential equations useful.
Book Synopsis Frattura ed Integrità Strutturale: Annals 2014 by : Luca Susmel
Download or read book Frattura ed Integrità Strutturale: Annals 2014 written by Luca Susmel and published by Gruppo Italiano Frattura. This book was released on 2014-09-12 with total page 1208 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Author :Snehashish Chakraverty Publisher :World Scientific Publishing Company ISBN 13 :9789811245350 Total Pages :0 pages Book Rating :4.2/5 (453 download)
Book Synopsis Wave Dynamics by : Snehashish Chakraverty
Download or read book Wave Dynamics written by Snehashish Chakraverty and published by World Scientific Publishing Company. This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are various types of waves including water, sound, electromagnetic, seismic and shock etc. These waves need to be analyzed and understood for different practical applications. This book is an attempt to consider the waves in detail to understand the physical and mathematical phenomena. A major challenge is to model waves by experimental studies. The aim of this book will be to address the efficient and recently developed theories along with the basic equations of wave dynamics. The latest development of analytical/semi analytical and numerical methods with respect to wave dynamics will also be covered. Further few challenging experimental studies will then be considered for related problems. This book presents advances in wave dynamics in simple and easy to follow chapters for the benefit of the readers/researchers.
Book Synopsis Anisotropic Doubly-Curved Shells by : Francesco Tornabene
Download or read book Anisotropic Doubly-Curved Shells written by Francesco Tornabene and published by Società Editrice Esculapio. This book was released on 2019-11-01 with total page 1199 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims to present in depth several Higher-order Shear Deformation Theories (HSDTs) by means of a unified approach for the mechanical analysis of doubly-curved shell structures made of anisotropic and composite materials. In particular, the strong and weak formulations of the corresponding governing equations are discussed and illustrated. The approach presented in this volume is completely general and represents a valid tool to investigate the structural behavior of many arbitrarily shaped structures. An isogeometric mapping procedure is also illustrated to this aim. Special attention is given also to advanced and innovative constituents, such as Carbon Nanotubes (CNTs), Variable Angle Tow (VAT) composites and Functionally Graded Materials (FGMs). In addition, several numerical applications are developed to support the theoretical models. Accurate, efficient and reliable numerical techniques able to approximate both derivatives and integrals are presented, which are respectively the Differential Quadrature (DQ) and Integral Quadrature (IQ) methods. Finally, two numerical techniques, named Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite Element Method (WFEM), are developed to deal with multi-element domains characterized by arbitrary shapes and discontinuities.
Book Synopsis Synthesis, Design, and Resource Optimization in Batch Chemical Plants by : Thokozani Majozi
Download or read book Synthesis, Design, and Resource Optimization in Batch Chemical Plants written by Thokozani Majozi and published by CRC Press. This book was released on 2015-03-04 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The manner in which time is captured forms the foundation for synthesis, design, and optimization in batch chemical plants. However, there are still serious challenges with handling time in batch plants. Most techniques tend to assume either a fixed time dimension or adopt time average models to tame the time dimension, thereby simplifying the resu