Federated Learning Systems

Download Federated Learning Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030706044
Total Pages : 207 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning Systems by : Muhammad Habib ur Rehman

Download or read book Federated Learning Systems written by Muhammad Habib ur Rehman and published by Springer Nature. This book was released on 2021-06-11 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.

Federated Learning

Download Federated Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030630765
Total Pages : 291 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning by : Qiang Yang

Download or read book Federated Learning written by Qiang Yang and published by Springer Nature. This book was released on 2020-11-25 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated learning model against different types of attacks such as data leakage and/or data poisoning. Secondly, the book presents incentive mechanisms which aim to encourage individuals to participate in the federated learning ecosystems. Last but not least, this book also describes how federated learning can be applied in industry and business to address data silo and privacy-preserving problems. The book is intended for readers from both the academia and the industry, who would like to learn about federated learning, practice its implementation, and apply it in their own business. Readers are expected to have some basic understanding of linear algebra, calculus, and neural network. Additionally, domain knowledge in FinTech and marketing would be helpful.”

Artificial Intelligence in Healthcare

Download Artificial Intelligence in Healthcare PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128184396
Total Pages : 385 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Healthcare by : Adam Bohr

Download or read book Artificial Intelligence in Healthcare written by Adam Bohr and published by Academic Press. This book was released on 2020-06-21 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data

Federated Learning for Digital Healthcare Systems

Download Federated Learning for Digital Healthcare Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0443138966
Total Pages : 459 pages
Book Rating : 4.4/5 (431 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning for Digital Healthcare Systems by : Agbotiname Lucky Imoize

Download or read book Federated Learning for Digital Healthcare Systems written by Agbotiname Lucky Imoize and published by Elsevier. This book was released on 2024-06-02 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Federated Learning for Digital Healthcare Systems critically examines the key factors that contribute to the problem of applying machine learning in healthcare systems and investigates how federated learning can be employed to address the problem. The book discusses, examines, and compares the applications of federated learning solutions in emerging digital healthcare systems, providing a critical look in terms of the required resources, computational complexity, and system performance. In the first section, chapters examine how to address critical security and privacy concerns and how to revamp existing machine learning models. In subsequent chapters, the book's authors review recent advances to tackle emerging efficient and lightweight algorithms and protocols to reduce computational overheads and communication costs in wireless healthcare systems. Consideration is also given to government and economic regulations as well as legal considerations when federated learning is applied to digital healthcare systems. - Provides insights into real-world scenarios of the design, development, deployment, application, management, and benefits of federated learning in emerging digital healthcare systems - Highlights the need to design efficient federated learning-based algorithms to tackle the proliferating security and patient privacy issues in digital healthcare systems - Reviews the latest research, along with practical solutions and applications developed by global experts from academia and industry

Machine Learning for Health Informatics

Download Machine Learning for Health Informatics PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319504789
Total Pages : 503 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Health Informatics by : Andreas Holzinger

Download or read book Machine Learning for Health Informatics written by Andreas Holzinger and published by Springer. This book was released on 2016-12-09 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning (ML) is the fastest growing field in computer science, and Health Informatics (HI) is amongst the greatest application challenges, providing future benefits in improved medical diagnoses, disease analyses, and pharmaceutical development. However, successful ML for HI needs a concerted effort, fostering integrative research between experts ranging from diverse disciplines from data science to visualization. Tackling complex challenges needs both disciplinary excellence and cross-disciplinary networking without any boundaries. Following the HCI-KDD approach, in combining the best of two worlds, it is aimed to support human intelligence with machine intelligence. This state-of-the-art survey is an output of the international HCI-KDD expert network and features 22 carefully selected and peer-reviewed chapters on hot topics in machine learning for health informatics; they discuss open problems and future challenges in order to stimulate further research and international progress in this field.

Big Data over Networks

Download Big Data over Networks PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107099005
Total Pages : 459 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Big Data over Networks by : Shuguang Cui

Download or read book Big Data over Networks written by Shuguang Cui and published by Cambridge University Press. This book was released on 2016-01-14 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: Examines the crucial interaction between big data and communication, social and biological networks using critical mathematical tools and state-of-the-art research.

AI for Healthcare with Keras and Tensorflow 2.0

Download AI for Healthcare with Keras and Tensorflow 2.0 PDF Online Free

Author :
Publisher :
ISBN 13 : 9781484270875
Total Pages : 0 pages
Book Rating : 4.2/5 (78 download)

DOWNLOAD NOW!


Book Synopsis AI for Healthcare with Keras and Tensorflow 2.0 by : Anshik

Download or read book AI for Healthcare with Keras and Tensorflow 2.0 written by Anshik and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how AI impacts the healthcare ecosystem through real-life case studies with TensorFlow 2.0 and other machine learning (ML) libraries. This book begins by explaining the dynamics of the healthcare market, including the role of stakeholders such as healthcare professionals, patients, and payers. Then it moves into the case studies. The case studies start with EHR data and how you can account for sub-populations using a multi-task setup when you are working on any downstream task. You also will try to predict ICD-9 codes using the same data. You will study transformer models. And you will be exposed to the challenges of applying modern ML techniques to highly sensitive data in healthcare using federated learning. You will look at semi-supervised approaches that are used in a low training data setting, a case very often observed in specialized domains such as healthcare. You will be introduced to applications of advanced topics such as the graph convolutional network and how you can develop and optimize image analysis pipelines when using 2D and 3D medical images. The concluding section shows you how to build and design a closed-domain Q&A system with paraphrasing, re-ranking, and strong QnA setup. And, lastly, after discussing how web and server technologies have come to make scaling and deploying easy, an ML app is deployed for the world to see with Docker using Flask. By the end of this book, you will have a clear understanding of how the healthcare system works and how to apply ML and deep learning tools and techniques to the healthcare industry. You will: Get complete, clear, and comprehensive coverage of algorithms and techniques related to case studies Look at different problem areas within the healthcare industry and solve them in a code-first approach Explore and understand advanced topics such as multi-task learning, transformers, and graph convolutional networks Understand the industry and learn ML .

Statistical Evaluation of Diagnostic Performance

Download Statistical Evaluation of Diagnostic Performance PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439812233
Total Pages : 243 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Statistical Evaluation of Diagnostic Performance by : Kelly H. Zou

Download or read book Statistical Evaluation of Diagnostic Performance written by Kelly H. Zou and published by CRC Press. This book was released on 2016-04-19 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical evaluation of diagnostic performance in general and Receiver Operating Characteristic (ROC) analysis in particular are important for assessing the performance of medical tests and statistical classifiers, as well as for evaluating predictive models or algorithms. This book presents innovative approaches in ROC analysis, which are releva

Artificial Intelligence in Medical Imaging

Download Artificial Intelligence in Medical Imaging PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319948784
Total Pages : 369 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence in Medical Imaging by : Erik R. Ranschaert

Download or read book Artificial Intelligence in Medical Imaging written by Erik R. Ranschaert and published by Springer. This book was released on 2019-01-29 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough overview of the ongoing evolution in the application of artificial intelligence (AI) within healthcare and radiology, enabling readers to gain a deeper insight into the technological background of AI and the impacts of new and emerging technologies on medical imaging. After an introduction on game changers in radiology, such as deep learning technology, the technological evolution of AI in computing science and medical image computing is described, with explanation of basic principles and the types and subtypes of AI. Subsequent sections address the use of imaging biomarkers, the development and validation of AI applications, and various aspects and issues relating to the growing role of big data in radiology. Diverse real-life clinical applications of AI are then outlined for different body parts, demonstrating their ability to add value to daily radiology practices. The concluding section focuses on the impact of AI on radiology and the implications for radiologists, for example with respect to training. Written by radiologists and IT professionals, the book will be of high value for radiologists, medical/clinical physicists, IT specialists, and imaging informatics professionals.

Deep Learning with Azure

Download Deep Learning with Azure PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484236793
Total Pages : 298 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with Azure by : Mathew Salvaris

Download or read book Deep Learning with Azure written by Mathew Salvaris and published by Apress. This book was released on 2018-08-24 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI? Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll Learn Become familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AI Use pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more) Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolving Discover the options for training and operationalizing deep learning models on Azure Who This Book Is For Professional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful.

Digital Infrastructure for the Learning Health System

Download Digital Infrastructure for the Learning Health System PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309154162
Total Pages : 336 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Digital Infrastructure for the Learning Health System by : Institute of Medicine

Download or read book Digital Infrastructure for the Learning Health System written by Institute of Medicine and published by National Academies Press. This book was released on 2011-10-21 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Like many other industries, health care is increasingly turning to digital information and the use of electronic resources. The Institute of Medicine's Roundtable on Value & Science-Driven Health Care hosted three workshops to explore current efforts and opportunities to accelerate progress in improving health and health care with information technology systems.

Federated Learning and Privacy-Preserving in Healthcare AI

Download Federated Learning and Privacy-Preserving in Healthcare AI PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 :
Total Pages : 373 pages
Book Rating : 4.3/5 (693 download)

DOWNLOAD NOW!


Book Synopsis Federated Learning and Privacy-Preserving in Healthcare AI by : Lilhore, Umesh Kumar

Download or read book Federated Learning and Privacy-Preserving in Healthcare AI written by Lilhore, Umesh Kumar and published by IGI Global. This book was released on 2024-05-02 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of artificial intelligence (AI) in data-driven medicine has revolutionized healthcare, presenting practitioners with unprecedented tools for diagnosis and personalized therapy. However, this progress comes with a critical concern: the security and privacy of sensitive patient data. As healthcare increasingly leans on AI, the need for robust solutions to safeguard patient information has become more pressing than ever. Federated Learning and Privacy-Preserving in Healthcare AI emerges as the definitive solution to balancing medical progress with patient data security. This carefully curated volume not only outlines the challenges of federated learning but also provides a roadmap for implementing privacy-preserving AI systems in healthcare. By decentralizing the training of AI models, federated learning mitigates the risks associated with centralizing patient data, ensuring that critical information never leaves its original location. Aimed at healthcare professionals, AI experts, policymakers, and academics, this book not only delves into the technical aspects of federated learning but also fosters a collaborative approach to address the multifaceted challenges at the intersection of healthcare and AI.

Advances and Open Problems in Federated Learning

Download Advances and Open Problems in Federated Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680837889
Total Pages : 226 pages
Book Rating : 4.8/5 (378 download)

DOWNLOAD NOW!


Book Synopsis Advances and Open Problems in Federated Learning by : Peter Kairouz

Download or read book Advances and Open Problems in Federated Learning written by Peter Kairouz and published by . This book was released on 2021-06-23 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective.Since then, the topic has gathered much interest across many different disciplines and the realization that solving many of these interdisciplinary problems likely requires not just machine learning but techniques from distributed optimization, cryptography, security, differential privacy, fairness, compressed sensing, systems, information theory, statistics, and more.This monograph has contributions from leading experts across the disciplines, who describe the latest state-of-the art from their perspective. These contributions have been carefully curated into a comprehensive treatment that enables the reader to understand the work that has been done and get pointers to where effort is required to solve many of the problems before Federated Learning can become a reality in practical systems.Researchers working in the area of distributed systems will find this monograph an enlightening read that may inspire them to work on the many challenging issues that are outlined. This monograph will get the reader up to speed quickly and easily on what is likely to become an increasingly important topic: Federated Learning.

Poverty in the Philippines

Download Poverty in the Philippines PDF Online Free

Author :
Publisher : Asian Development Bank
ISBN 13 : 9292547410
Total Pages : 188 pages
Book Rating : 4.2/5 (925 download)

DOWNLOAD NOW!


Book Synopsis Poverty in the Philippines by : Asian Development Bank

Download or read book Poverty in the Philippines written by Asian Development Bank and published by Asian Development Bank. This book was released on 2009-12-01 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Against the backdrop of the global financial crisis and rising food, fuel, and commodity prices, addressing poverty and inequality in the Philippines remains a challenge. The proportion of households living below the official poverty line has declined slowly and unevenly in the past four decades, and poverty reduction has been much slower than in neighboring countries such as the People's Republic of China, Indonesia, Thailand, and Viet Nam. Economic growth has gone through boom and bust cycles, and recent episodes of moderate economic expansion have had limited impact on the poor. Great inequality across income brackets, regions, and sectors, as well as unmanaged population growth, are considered some of the key factors constraining poverty reduction efforts. This publication analyzes the causes of poverty and recommends ways to accelerate poverty reduction and achieve more inclusive growth. it also provides an overview of current government responses, strategies, and achievements in the fight against poverty and identifies and prioritizes future needs and interventions. The analysis is based on current literature and the latest available data, including the 2006 Family Income and Expenditure Survey.

Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3

Download Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3 PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030630927
Total Pages : 1069 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3 by : Kohei Arai

Download or read book Proceedings of the Future Technologies Conference (FTC) 2020, Volume 3 written by Kohei Arai and published by Springer Nature. This book was released on 2020-10-30 with total page 1069 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the state-of-the-art intelligent methods and techniques for solving real-world problems along with a vision of the future research. The fifth 2020 Future Technologies Conference was organized virtually and received a total of 590 submissions from academic pioneering researchers, scientists, industrial engineers, and students from all over the world. The submitted papers covered a wide range of important topics including but not limited to computing, electronics, artificial intelligence, robotics, security and communications and their applications to the real world. After a double-blind peer review process, 210 submissions (including 6 poster papers) have been selected to be included in these proceedings. One of the meaningful and valuable dimensions of this conference is the way it brings together a large group of technology geniuses in one venue to not only present breakthrough research in future technologies, but also to promote discussions and debate of relevant issues, challenges, opportunities and research findings. The authors hope that readers find the book interesting, exciting and inspiring.

Internet of Things and Big Data Technologies for Next Generation Healthcare

Download Internet of Things and Big Data Technologies for Next Generation Healthcare PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319497367
Total Pages : 386 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Internet of Things and Big Data Technologies for Next Generation Healthcare by : Chintan Bhatt

Download or read book Internet of Things and Big Data Technologies for Next Generation Healthcare written by Chintan Bhatt and published by Springer. This book was released on 2017-01-01 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive book focuses on better big-data security for healthcare organizations. Following an extensive introduction to the Internet of Things (IoT) in healthcare including challenging topics and scenarios, it offers an in-depth analysis of medical body area networks with the 5th generation of IoT communication technology along with its nanotechnology. It also describes a novel strategic framework and computationally intelligent model to measure possible security vulnerabilities in the context of e-health. Moreover, the book addresses healthcare systems that handle large volumes of data driven by patients’ records and health/personal information, including big-data-based knowledge management systems to support clinical decisions. Several of the issues faced in storing/processing big data are presented along with the available tools, technologies and algorithms to deal with those problems as well as a case study in healthcare analytics. Addressing trust, privacy, and security issues as well as the IoT and big-data challenges, the book highlights the advances in the field to guide engineers developing different IoT devices and evaluating the performance of different IoT techniques. Additionally, it explores the impact of such technologies on public, private, community, and hybrid scenarios in healthcare. This book offers professionals, scientists and engineers the latest technologies, techniques, and strategies for IoT and big data.

Humanity Driven AI

Download Humanity Driven AI PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030721884
Total Pages : 330 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Humanity Driven AI by : Fang Chen

Download or read book Humanity Driven AI written by Fang Chen and published by Springer Nature. This book was released on 2021-12-01 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence (AI) is changing the world around us, and it is changing the way people are living, working, and entertaining. As a result, demands for understanding how AI functions to achieve and enhance human goals from basic needs to high level well-being (whilst maintaining human health) are increasing. This edited book systematically investigates how AI facilitates enhancing human needs in the digital age, and reports on the state-of-the-art advances in theories, techniques, and applications of humanity driven AI. Consisting of five parts, it covers the fundamentals of AI and humanity, AI for productivity, AI for well-being, AI for sustainability, and human-AI partnership. Humanity Driven AI creates an important opportunity to not only promote AI techniques from a humanity perspective, but also to invent novel AI applications to benefit humanity. It aims to serve as the dedicated source for the theories, methodologies, and applications on humanity driven AI, establishing state-of-the-art research, and providing a ground-breaking book for graduate students, research professionals, and AI practitioners.