A risk-gain-sparsity optimization approach

Download A risk-gain-sparsity optimization approach PDF Online Free

Author :
Publisher : Roma TrE-Press
ISBN 13 :
Total Pages : 34 pages
Book Rating : 4.2/5 (597 download)

DOWNLOAD NOW!


Book Synopsis A risk-gain-sparsity optimization approach by : Alessandra Congedo

Download or read book A risk-gain-sparsity optimization approach written by Alessandra Congedo and published by Roma TrE-Press. This book was released on 2024-06-12 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uno dei principi fondamentali dei modelli di selezione del portafoglio è la minimizzazione del rischio attraverso la diversificazione degli investimenti. Tuttavia, i benefici della diversificazione si riducono in presenza di un'elevata correlazione tra gli asset. È noto che la diversificazione attraverso l'uso di portafogli più ampi non è il modo migliore per ottenere un miglioramento della performance fuori campione. Inoltre, l'inclusione di un numero elevato di posizioni nel portafoglio aumenta i costi di gestione e di transazione. Mentre i modelli classici di selezione del portafoglio si concentrano sulla minimizzazione del rischio e sulla massimizzazione del rendimento, lo scopo di questo lavoro è quello di includere un terzo obiettivo: la norma-1. Ciò consente di selezionare portafogli sparsi, cioè con un numero limitato di attività, che sono più facili da gestire e consentono di ottenere buoni risultati in termini di rischio-rendimento. La nostra analisi empirica si basa su un dataset di riferimento disponibile pubblicamente e spesso utilizzato in letteratura. DOI: 10.13134/979-12-5977-332-6

Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers

Download Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 160198460X
Total Pages : 138 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers by : Stephen Boyd

Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.

Optimization Methods in Finance

Download Optimization Methods in Finance PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521861700
Total Pages : 358 pages
Book Rating : 4.8/5 (617 download)

DOWNLOAD NOW!


Book Synopsis Optimization Methods in Finance by : Gerard Cornuejols

Download or read book Optimization Methods in Finance written by Gerard Cornuejols and published by Cambridge University Press. This book was released on 2006-12-21 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimization models play an increasingly important role in financial decisions. This is the first textbook devoted to explaining how recent advances in optimization models, methods and software can be applied to solve problems in computational finance more efficiently and accurately. Chapters discussing the theory and efficient solution methods for all major classes of optimization problems alternate with chapters illustrating their use in modeling problems of mathematical finance. The reader is guided through topics such as volatility estimation, portfolio optimization problems and constructing an index fund, using techniques such as nonlinear optimization models, quadratic programming formulations and integer programming models respectively. The book is based on Master's courses in financial engineering and comes with worked examples, exercises and case studies. It will be welcomed by applied mathematicians, operational researchers and others who work in mathematical and computational finance and who are seeking a text for self-learning or for use with courses.

Optimization Models

Download Optimization Models PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107050871
Total Pages : 651 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Optimization Models by : Giuseppe C. Calafiore

Download or read book Optimization Models written by Giuseppe C. Calafiore and published by Cambridge University Press. This book was released on 2014-10-31 with total page 651 pages. Available in PDF, EPUB and Kindle. Book excerpt: This accessible textbook demonstrates how to recognize, simplify, model and solve optimization problems - and apply these principles to new projects.

Financial Risk Modelling and Portfolio Optimization with R

Download Financial Risk Modelling and Portfolio Optimization with R PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119119685
Total Pages : 448 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Financial Risk Modelling and Portfolio Optimization with R by : Bernhard Pfaff

Download or read book Financial Risk Modelling and Portfolio Optimization with R written by Bernhard Pfaff and published by John Wiley & Sons. This book was released on 2016-08-16 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Risk Modelling and Portfolio Optimization with R, 2nd Edition Bernhard Pfaff, Invesco Global Asset Allocation, Germany A must have text for risk modelling and portfolio optimization using R. This book introduces the latest techniques advocated for measuring financial market risk and portfolio optimization, and provides a plethora of R code examples that enable the reader to replicate the results featured throughout the book. This edition has been extensively revised to include new topics on risk surfaces and probabilistic utility optimization as well as an extended introduction to R language. Financial Risk Modelling and Portfolio Optimization with R: Demonstrates techniques in modelling financial risks and applying portfolio optimization techniques as well as recent advances in the field. Introduces stylized facts, loss function and risk measures, conditional and unconditional modelling of risk; extreme value theory, generalized hyperbolic distribution, volatility modelling and concepts for capturing dependencies. Explores portfolio risk concepts and optimization with risk constraints. Is accompanied by a supporting website featuring examples and case studies in R. Includes updated list of R packages for enabling the reader to replicate the results in the book. Graduate and postgraduate students in finance, economics, risk management as well as practitioners in finance and portfolio optimization will find this book beneficial. It also serves well as an accompanying text in computer-lab classes and is therefore suitable for self-study.

Tree-Based Methods for Statistical Learning in R

Download Tree-Based Methods for Statistical Learning in R PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000595315
Total Pages : 405 pages
Book Rating : 4.0/5 (5 download)

DOWNLOAD NOW!


Book Synopsis Tree-Based Methods for Statistical Learning in R by : Brandon M. Greenwell

Download or read book Tree-Based Methods for Statistical Learning in R written by Brandon M. Greenwell and published by CRC Press. This book was released on 2022-06-23 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tree-based Methods for Statistical Learning in R provides a thorough introduction to both individual decision tree algorithms (Part I) and ensembles thereof (Part II). Part I of the book brings several different tree algorithms into focus, both conventional and contemporary. Building a strong foundation for how individual decision trees work will help readers better understand tree-based ensembles at a deeper level, which lie at the cutting edge of modern statistical and machine learning methodology. The book follows up most ideas and mathematical concepts with code-based examples in the R statistical language; with an emphasis on using as few external packages as possible. For example, users will be exposed to writing their own random forest and gradient tree boosting functions using simple for loops and basic tree fitting software (like rpart and party/partykit), and more. The core chapters also end with a detailed section on relevant software in both R and other opensource alternatives (e.g., Python, Spark, and Julia), and example usage on real data sets. While the book mostly uses R, it is meant to be equally accessible and useful to non-R programmers. Consumers of this book will have gained a solid foundation (and appreciation) for tree-based methods and how they can be used to solve practical problems and challenges data scientists often face in applied work. Features: Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests). A companion website containing additional supplementary material and the code to reproduce every example and figure in the book. A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., there’s an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree). Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance.

Sparse Modeling for Image and Vision Processing

Download Sparse Modeling for Image and Vision Processing PDF Online Free

Author :
Publisher : Now Publishers
ISBN 13 : 9781680830088
Total Pages : 216 pages
Book Rating : 4.8/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Sparse Modeling for Image and Vision Processing by : Julien Mairal

Download or read book Sparse Modeling for Image and Vision Processing written by Julien Mairal and published by Now Publishers. This book was released on 2014-12-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse Modeling for Image and Vision Processing offers a self-contained view of sparse modeling for visual recognition and image processing. More specifically, it focuses on applications where the dictionary is learned and adapted to data, yielding a compact representation that has been successful in various contexts.

Linear and Mixed Integer Programming for Portfolio Optimization

Download Linear and Mixed Integer Programming for Portfolio Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319184822
Total Pages : 131 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Linear and Mixed Integer Programming for Portfolio Optimization by : Renata Mansini

Download or read book Linear and Mixed Integer Programming for Portfolio Optimization written by Renata Mansini and published by Springer. This book was released on 2015-06-10 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents solutions to the general problem of single period portfolio optimization. It introduces different linear models, arising from different performance measures, and the mixed integer linear models resulting from the introduction of real features. Other linear models, such as models for portfolio rebalancing and index tracking, are also covered. The book discusses computational issues and provides a theoretical framework, including the concepts of risk-averse preferences, stochastic dominance and coherent risk measures. The material is presented in a style that requires no background in finance or in portfolio optimization; some experience in linear and mixed integer models, however, is required. The book is thoroughly didactic, supplementing the concepts with comments and illustrative examples.

Optimization with Sparsity-Inducing Penalties

Download Optimization with Sparsity-Inducing Penalties PDF Online Free

Author :
Publisher :
ISBN 13 : 9781601985101
Total Pages : 124 pages
Book Rating : 4.9/5 (851 download)

DOWNLOAD NOW!


Book Synopsis Optimization with Sparsity-Inducing Penalties by : Francis Bach

Download or read book Optimization with Sparsity-Inducing Penalties written by Francis Bach and published by . This book was released on 2011-12-23 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate nonsmooth norms. Optimization with Sparsity-Inducing Penalties presents optimization tools and techniques dedicated to such sparsity-inducing penalties from a general perspective. It covers proximal methods, block-coordinate descent, reweighted ?2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provides an extensive set of experiments to compare various algorithms from a computational point of view. The presentation of Optimization with Sparsity-Inducing Penalties is essentially based on existing literature, but the process of constructing a general framework leads naturally to new results, connections and points of view. It is an ideal reference on the topic for anyone working in machine learning and related areas.

Statistical Learning with Sparsity

Download Statistical Learning with Sparsity PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498712177
Total Pages : 354 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Statistical Learning with Sparsity by : Trevor Hastie

Download or read book Statistical Learning with Sparsity written by Trevor Hastie and published by CRC Press. This book was released on 2015-05-07 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover New Methods for Dealing with High-Dimensional DataA sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underl

Applying Particle Swarm Optimization

Download Applying Particle Swarm Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030702812
Total Pages : 355 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Applying Particle Swarm Optimization by : Burcu Adıgüzel Mercangöz

Download or read book Applying Particle Swarm Optimization written by Burcu Adıgüzel Mercangöz and published by Springer Nature. This book was released on 2021-05-13 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains the theoretical structure of particle swarm optimization (PSO) and focuses on the application of PSO to portfolio optimization problems. The general goal of portfolio optimization is to find a solution that provides the highest expected return at each level of portfolio risk. According to H. Markowitz’s portfolio selection theory, as new assets are added to an investment portfolio, the total risk of the portfolio’s decreases depending on the correlations of asset returns, while the expected return on the portfolio represents the weighted average of the expected returns for each asset. The book explains PSO in detail and demonstrates how to implement Markowitz’s portfolio optimization approach using PSO. In addition, it expands on the Markowitz model and seeks to improve the solution-finding process with the aid of various algorithms. In short, the book provides researchers, teachers, engineers, managers and practitioners with many tools they need to apply the PSO technique to portfolio optimization.

Process Optimization

Download Process Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387714359
Total Pages : 462 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Process Optimization by : Enrique del Castillo

Download or read book Process Optimization written by Enrique del Castillo and published by Springer Science & Business Media. This book was released on 2007-09-14 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers several bases at once. It is useful as a textbook for a second course in experimental optimization techniques for industrial production processes. In addition, it is a superb reference volume for use by professors and graduate students in Industrial Engineering and Statistics departments. It will also be of huge interest to applied statisticians, process engineers, and quality engineers working in the electronics and biotech manufacturing industries. In all, it provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization, and more.

Aimms Optimization Modeling

Download Aimms Optimization Modeling PDF Online Free

Author :
Publisher : Lulu.com
ISBN 13 : 1847539122
Total Pages : 318 pages
Book Rating : 4.8/5 (475 download)

DOWNLOAD NOW!


Book Synopsis Aimms Optimization Modeling by : Johannes Bisschop

Download or read book Aimms Optimization Modeling written by Johannes Bisschop and published by Lulu.com. This book was released on 2006 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: The AIMMS Optimization Modeling book provides not only an introduction to modeling but also a suite of worked examples. It is aimed at users who are new to modeling and those who have limited modeling experience. Both the basic concepts of optimization modeling and more advanced modeling techniques are discussed. The Optimization Modeling book is AIMMS version independent.

Encyclopedia of Optimization

Download Encyclopedia of Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387747583
Total Pages : 4646 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Encyclopedia of Optimization by : Christodoulos A. Floudas

Download or read book Encyclopedia of Optimization written by Christodoulos A. Floudas and published by Springer Science & Business Media. This book was released on 2008-09-04 with total page 4646 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the Encyclopedia of Optimization is to introduce the reader to a complete set of topics that show the spectrum of research, the richness of ideas, and the breadth of applications that has come from this field. The second edition builds on the success of the former edition with more than 150 completely new entries, designed to ensure that the reference addresses recent areas where optimization theories and techniques have advanced. Particularly heavy attention resulted in health science and transportation, with entries such as "Algorithms for Genomics", "Optimization and Radiotherapy Treatment Design", and "Crew Scheduling".

Optimization for Machine Learning

Download Optimization for Machine Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 026201646X
Total Pages : 509 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Optimization for Machine Learning by : Suvrit Sra

Download or read book Optimization for Machine Learning written by Suvrit Sra and published by MIT Press. This book was released on 2012 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date account of the interplay between optimization and machine learning, accessible to students and researchers in both communities. The interplay between optimization and machine learning is one of the most important developments in modern computational science. Optimization formulations and methods are proving to be vital in designing algorithms to extract essential knowledge from huge volumes of data. Machine learning, however, is not simply a consumer of optimization technology but a rapidly evolving field that is itself generating new optimization ideas. This book captures the state of the art of the interaction between optimization and machine learning in a way that is accessible to researchers in both fields. Optimization approaches have enjoyed prominence in machine learning because of their wide applicability and attractive theoretical properties. The increasing complexity, size, and variety of today's machine learning models call for the reassessment of existing assumptions. This book starts the process of reassessment. It describes the resurgence in novel contexts of established frameworks such as first-order methods, stochastic approximations, convex relaxations, interior-point methods, and proximal methods. It also devotes attention to newer themes such as regularized optimization, robust optimization, gradient and subgradient methods, splitting techniques, and second-order methods. Many of these techniques draw inspiration from other fields, including operations research, theoretical computer science, and subfields of optimization. The book will enrich the ongoing cross-fertilization between the machine learning community and these other fields, and within the broader optimization community.

Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations

Download Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000173755
Total Pages : 926 pages
Book Rating : 4.0/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations by : Hiroshi Yokota

Download or read book Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations written by Hiroshi Yokota and published by CRC Press. This book was released on 2021-04-20 with total page 926 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bridge Maintenance, Safety, Management, Life-Cycle Sustainability and Innovations contains lectures and papers presented at the Tenth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2020), held in Sapporo, Hokkaido, Japan, April 11–15, 2021. This volume consists of a book of extended abstracts and a USB card containing the full papers of 571 contributions presented at IABMAS 2020, including the T.Y. Lin Lecture, 9 Keynote Lectures, and 561 technical papers from 40 countries. The contributions presented at IABMAS 2020 deal with the state of the art as well as emerging concepts and innovative applications related to the main aspects of maintenance, safety, management, life-cycle sustainability and technological innovations of bridges. Major topics include: advanced bridge design, construction and maintenance approaches, safety, reliability and risk evaluation, life-cycle management, life-cycle sustainability, standardization, analytical models, bridge management systems, service life prediction, maintenance and management strategies, structural health monitoring, non-destructive testing and field testing, safety, resilience, robustness and redundancy, durability enhancement, repair and rehabilitation, fatigue and corrosion, extreme loads, and application of information and computer technology and artificial intelligence for bridges, among others. This volume provides both an up-to-date overview of the field of bridge engineering and significant contributions to the process of making more rational decisions on maintenance, safety, management, life-cycle sustainability and technological innovations of bridges for the purpose of enhancing the welfare of society. The Editors hope that these Proceedings will serve as a valuable reference to all concerned with bridge structure and infrastructure systems, including engineers, researchers, academics and students from all areas of bridge engineering.

Advances in Cooperative Control and Optimization

Download Advances in Cooperative Control and Optimization PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540743561
Total Pages : 426 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Advances in Cooperative Control and Optimization by : Michael Hirsch

Download or read book Advances in Cooperative Control and Optimization written by Michael Hirsch and published by Springer. This book was released on 2007-10-24 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Across the globe, the past several years have seen a tremendous increase in the role of cooperative autonomous systems. The field of cooperative control and optimization has established itself as a part of many different scientific disciplines. The contents of this hugely important volume, which adds much to the debate on the subject, are culled from papers presented at the Seventh Annual International Conference on Cooperative Control and Optimization, held in Gainesville, Florida, in January 2007.