Hands-On Reinforcement Learning for Games

Download Hands-On Reinforcement Learning for Games PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1839216778
Total Pages : 420 pages
Book Rating : 4.8/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Reinforcement Learning for Games by : Micheal Lanham

Download or read book Hands-On Reinforcement Learning for Games written by Micheal Lanham and published by Packt Publishing Ltd. This book was released on 2020-01-03 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow Key FeaturesGet to grips with the different reinforcement and DRL algorithms for game developmentLearn how to implement components such as artificial agents, map and level generation, and audio generationGain insights into cutting-edge RL research and understand how it is similar to artificial general researchBook Description With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications. What you will learnUnderstand how deep learning can be integrated into an RL agentExplore basic to advanced algorithms commonly used in game developmentBuild agents that can learn and solve problems in all types of environmentsTrain a Deep Q-Network (DQN) agent to solve the CartPole balancing problemDevelop game AI agents by understanding the mechanism behind complex AIIntegrate all the concepts learned into new projects or gaming agentsWho this book is for If you’re a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.

A Review of Recent Advancements in Deep Reinforcement Learning

Download A Review of Recent Advancements in Deep Reinforcement Learning PDF Online Free

Author :
Publisher :
ISBN 13 : 9783668765016
Total Pages : 84 pages
Book Rating : 4.7/5 (65 download)

DOWNLOAD NOW!


Book Synopsis A Review of Recent Advancements in Deep Reinforcement Learning by : Artur Sahakjan

Download or read book A Review of Recent Advancements in Deep Reinforcement Learning written by Artur Sahakjan and published by . This book was released on 2018-07-03 with total page 84 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bachelor Thesis from the year 2018 in the subject Computer Science - Commercial Information Technology, grade: 1.0, University of Duisburg-Essen, language: English, abstract: Reinforcement learning is a learning problem in which an actor has to behave optimally in its environment. Deep learning methods, on the other hand, are a subclass of representation learning, which in turn focuses on extracting the necessary features for the task (e.g. classification or detection). As such, they serve as powerful function approximators. The combination of those two paradigm results in deep reinforcement learning. This thesis gives an overview of the recent advancement in the field. The results are divided into two broad research directions: value-based and policy-based approaches. This research shows several algorithms from those directions and how they perform. Finally, multiple open research questions are addressed and new research directions are proposed.

An Introduction to Deep Reinforcement Learning

Download An Introduction to Deep Reinforcement Learning PDF Online Free

Author :
Publisher : Foundations and Trends (R) in Machine Learning
ISBN 13 : 9781680835380
Total Pages : 156 pages
Book Rating : 4.8/5 (353 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Deep Reinforcement Learning by : Vincent Francois-Lavet

Download or read book An Introduction to Deep Reinforcement Learning written by Vincent Francois-Lavet and published by Foundations and Trends (R) in Machine Learning. This book was released on 2018-12-20 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has recently been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine. Deep RL opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This book provides the reader with a starting point for understanding the topic. Although written at a research level it provides a comprehensive and accessible introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. Written by recognized experts, this book is an important introduction to Deep Reinforcement Learning for practitioners, researchers and students alike.

International Conference on Recent Advancements in Science and Engineering (RAiSE ‘23)

Download International Conference on Recent Advancements in Science and Engineering (RAiSE ‘23) PDF Online Free

Author :
Publisher : Book Rivers
ISBN 13 : 9355159889
Total Pages : 286 pages
Book Rating : 4.3/5 (551 download)

DOWNLOAD NOW!


Book Synopsis International Conference on Recent Advancements in Science and Engineering (RAiSE ‘23) by : KMCT College of Engineering for Women

Download or read book International Conference on Recent Advancements in Science and Engineering (RAiSE ‘23) written by KMCT College of Engineering for Women and published by Book Rivers. This book was released on 2023-05-09 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Deep Reinforcement Learning

Download Deep Reinforcement Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811382859
Total Pages : 215 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Deep Reinforcement Learning by : Mohit Sewak

Download or read book Deep Reinforcement Learning written by Mohit Sewak and published by Springer. This book was released on 2019-06-27 with total page 215 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book starts by presenting the basics of reinforcement learning using highly intuitive and easy-to-understand examples and applications, and then introduces the cutting-edge research advances that make reinforcement learning capable of out-performing most state-of-art systems, and even humans in a number of applications. The book not only equips readers with an understanding of multiple advanced and innovative algorithms, but also prepares them to implement systems such as those created by Google Deep Mind in actual code. This book is intended for readers who want to both understand and apply advanced concepts in a field that combines the best of two worlds – deep learning and reinforcement learning – to tap the potential of ‘advanced artificial intelligence’ for creating real-world applications and game-winning algorithms.

Deep Learning for Robot Perception and Cognition

Download Deep Learning for Robot Perception and Cognition PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323885721
Total Pages : 638 pages
Book Rating : 4.3/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Robot Perception and Cognition by : Alexandros Iosifidis

Download or read book Deep Learning for Robot Perception and Cognition written by Alexandros Iosifidis and published by Academic Press. This book was released on 2022-02-04 with total page 638 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep Learning for Robot Perception and Cognition introduces a broad range of topics and methods in deep learning for robot perception and cognition together with end-to-end methodologies. The book provides the conceptual and mathematical background needed for approaching a large number of robot perception and cognition tasks from an end-to-end learning point-of-view. The book is suitable for students, university and industry researchers and practitioners in Robotic Vision, Intelligent Control, Mechatronics, Deep Learning, Robotic Perception and Cognition tasks. - Presents deep learning principles and methodologies - Explains the principles of applying end-to-end learning in robotics applications - Presents how to design and train deep learning models - Shows how to apply deep learning in robot vision tasks such as object recognition, image classification, video analysis, and more - Uses robotic simulation environments for training deep learning models - Applies deep learning methods for different tasks ranging from planning and navigation to biosignal analysis

Deep Reinforcement Learning Hands-On

Download Deep Reinforcement Learning Hands-On PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788839307
Total Pages : 547 pages
Book Rating : 4.7/5 (888 download)

DOWNLOAD NOW!


Book Synopsis Deep Reinforcement Learning Hands-On by : Maxim Lapan

Download or read book Deep Reinforcement Learning Hands-On written by Maxim Lapan and published by Packt Publishing Ltd. This book was released on 2018-06-21 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide will teach you how deep learning (DL) can be used to solve complex real-world problems. Key Features Explore deep reinforcement learning (RL), from the first principles to the latest algorithms Evaluate high-profile RL methods, including value iteration, deep Q-networks, policy gradients, TRPO, PPO, DDPG, D4PG, evolution strategies and genetic algorithms Keep up with the very latest industry developments, including AI-driven chatbots Book Description Recent developments in reinforcement learning (RL), combined with deep learning (DL), have seen unprecedented progress made towards training agents to solve complex problems in a human-like way. Google’s use of algorithms to play and defeat the well-known Atari arcade games has propelled the field to prominence, and researchers are generating new ideas at a rapid pace. Deep Reinforcement Learning Hands-On is a comprehensive guide to the very latest DL tools and their limitations. You will evaluate methods including Cross-entropy and policy gradients, before applying them to real-world environments. Take on both the Atari set of virtual games and family favorites such as Connect4. The book provides an introduction to the basics of RL, giving you the know-how to code intelligent learning agents to take on a formidable array of practical tasks. Discover how to implement Q-learning on ‘grid world’ environments, teach your agent to buy and trade stocks, and find out how natural language models are driving the boom in chatbots. What you will learn Understand the DL context of RL and implement complex DL models Learn the foundation of RL: Markov decision processes Evaluate RL methods including Cross-entropy, DQN, Actor-Critic, TRPO, PPO, DDPG, D4PG and others Discover how to deal with discrete and continuous action spaces in various environments Defeat Atari arcade games using the value iteration method Create your own OpenAI Gym environment to train a stock trading agent Teach your agent to play Connect4 using AlphaGo Zero Explore the very latest deep RL research on topics including AI-driven chatbots Who this book is for Some fluency in Python is assumed. Basic deep learning (DL) approaches should be familiar to readers and some practical experience in DL will be helpful. This book is an introduction to deep reinforcement learning (RL) and requires no background in RL.

Deep Reinforcement Learning and Its Industrial Use Cases

Download Deep Reinforcement Learning and Its Industrial Use Cases PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1394272553
Total Pages : 421 pages
Book Rating : 4.3/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Deep Reinforcement Learning and Its Industrial Use Cases by : Shubham Mahajan

Download or read book Deep Reinforcement Learning and Its Industrial Use Cases written by Shubham Mahajan and published by John Wiley & Sons. This book was released on 2024-10-29 with total page 421 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book serves as a bridge connecting the theoretical foundations of DRL with practical, actionable insights for implementing these technologies in a variety of industrial contexts, making it a valuable resource for professionals and enthusiasts at the forefront of technological innovation. Deep Reinforcement Learning (DRL) represents one of the most dynamic and impactful areas of research and development in the field of artificial intelligence. Bridging the gap between decision-making theory and powerful deep learning models, DRL has evolved from academic curiosity to a cornerstone technology driving innovation across numerous industries. Its core premise—enabling machines to learn optimal actions within complex environments through trial and error—has broad implications, from automating intricate decision processes to optimizing operations that were previously beyond the reach of traditional AI techniques. “Deep Reinforcement Learning and Its Industrial Use Cases: AI for Real-World Applications” is an essential guide for anyone eager to understand the nexus between cutting-edge artificial intelligence techniques and practical industrial applications. This book not only demystifies the complex theory behind deep reinforcement learning (DRL) but also provides a clear roadmap for implementing these advanced algorithms in a variety of industries to solve real-world problems. Through a careful blend of theoretical foundations, practical insights, and diverse case studies, the book offers a comprehensive look into how DRL is revolutionizing fields such as finance, healthcare, manufacturing, and more, by optimizing decisions in dynamic and uncertain environments. This book distills years of research and practical experience into accessible and actionable knowledge. Whether you’re an AI professional seeking to expand your toolkit, a business leader aiming to leverage AI for competitive advantage, or a student or academic researching the latest in AI applications, this book provides valuable insights and guidance. Beyond just exploring the successes of DRL, it critically examines challenges, pitfalls, and ethical considerations, preparing readers to not only implement DRL solutions but to do so responsibly and effectively. Audience The book will be read by researchers, postgraduate students, and industry engineers in machine learning and artificial intelligence, as well as those in business and industry seeking to understand how DRL can be applied to solve complex industry-specific challenges and improve operational efficiency.

Deep Reinforcement Learning Hands-On

Download Deep Reinforcement Learning Hands-On PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1838820043
Total Pages : 827 pages
Book Rating : 4.8/5 (388 download)

DOWNLOAD NOW!


Book Synopsis Deep Reinforcement Learning Hands-On by : Maxim Lapan

Download or read book Deep Reinforcement Learning Hands-On written by Maxim Lapan and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: Revised and expanded to include multi-agent methods, discrete optimization, RL in robotics, advanced exploration techniques, and more Key Features Second edition of the bestselling introduction to deep reinforcement learning, expanded with six new chapters Learn advanced exploration techniques including noisy networks, pseudo-count, and network distillation methods Apply RL methods to cheap hardware robotics platforms Book DescriptionDeep Reinforcement Learning Hands-On, Second Edition is an updated and expanded version of the bestselling guide to the very latest reinforcement learning (RL) tools and techniques. It provides you with an introduction to the fundamentals of RL, along with the hands-on ability to code intelligent learning agents to perform a range of practical tasks. With six new chapters devoted to a variety of up-to-the-minute developments in RL, including discrete optimization (solving the Rubik's Cube), multi-agent methods, Microsoft's TextWorld environment, advanced exploration techniques, and more, you will come away from this book with a deep understanding of the latest innovations in this emerging field. In addition, you will gain actionable insights into such topic areas as deep Q-networks, policy gradient methods, continuous control problems, and highly scalable, non-gradient methods. You will also discover how to build a real hardware robot trained with RL for less than $100 and solve the Pong environment in just 30 minutes of training using step-by-step code optimization. In short, Deep Reinforcement Learning Hands-On, Second Edition, is your companion to navigating the exciting complexities of RL as it helps you attain experience and knowledge through real-world examples.What you will learn Understand the deep learning context of RL and implement complex deep learning models Evaluate RL methods including cross-entropy, DQN, actor-critic, TRPO, PPO, DDPG, D4PG, and others Build a practical hardware robot trained with RL methods for less than $100 Discover Microsoft s TextWorld environment, which is an interactive fiction games platform Use discrete optimization in RL to solve a Rubik s Cube Teach your agent to play Connect 4 using AlphaGo Zero Explore the very latest deep RL research on topics including AI chatbots Discover advanced exploration techniques, including noisy networks and network distillation techniques Who this book is for Some fluency in Python is assumed. Sound understanding of the fundamentals of deep learning will be helpful. This book is an introduction to deep RL and requires no background in RL

Reinforcement Learning, second edition

Download Reinforcement Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262352702
Total Pages : 549 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning, second edition by : Richard S. Sutton

Download or read book Reinforcement Learning, second edition written by Richard S. Sutton and published by MIT Press. This book was released on 2018-11-13 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: The significantly expanded and updated new edition of a widely used text on reinforcement learning, one of the most active research areas in artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the field's key ideas and algorithms. This second edition has been significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first edition, this second edition focuses on core online learning algorithms, with the more mathematical material set off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular case for which exact solutions can be found. Many algorithms presented in this part are new to the second edition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on reinforcement learning's relationships to psychology and neuroscience, as well as an updated case-studies chapter including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson's wagering strategy. The final chapter discusses the future societal impacts of reinforcement learning.

Recent Advancements in Artificial Intelligence

Download Recent Advancements in Artificial Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819711118
Total Pages : 409 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Recent Advancements in Artificial Intelligence by : Richi Nayak

Download or read book Recent Advancements in Artificial Intelligence written by Richi Nayak and published by Springer Nature. This book was released on with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Intelligent Systems Design and Applications

Download Intelligent Systems Design and Applications PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031647769
Total Pages : 510 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Systems Design and Applications by : Ajith Abraham

Download or read book Intelligent Systems Design and Applications written by Ajith Abraham and published by Springer Nature. This book was released on with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Deep Reinforcement Learning in Action

Download Deep Reinforcement Learning in Action PDF Online Free

Author :
Publisher : Manning
ISBN 13 : 1617295434
Total Pages : 381 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Deep Reinforcement Learning in Action by : Alexander Zai

Download or read book Deep Reinforcement Learning in Action written by Alexander Zai and published by Manning. This book was released on 2020-04-28 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Humans learn best from feedback—we are encouraged to take actions that lead to positive results while deterred by decisions with negative consequences. This reinforcement process can be applied to computer programs allowing them to solve more complex problems that classical programming cannot. Deep Reinforcement Learning in Action teaches you the fundamental concepts and terminology of deep reinforcement learning, along with the practical skills and techniques you’ll need to implement it into your own projects. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Deep reinforcement learning AI systems rapidly adapt to new environments, a vast improvement over standard neural networks. A DRL agent learns like people do, taking in raw data such as sensor input and refining its responses and predictions through trial and error. About the book Deep Reinforcement Learning in Action teaches you how to program AI agents that adapt and improve based on direct feedback from their environment. In this example-rich tutorial, you’ll master foundational and advanced DRL techniques by taking on interesting challenges like navigating a maze and playing video games. Along the way, you’ll work with core algorithms, including deep Q-networks and policy gradients, along with industry-standard tools like PyTorch and OpenAI Gym. What's inside Building and training DRL networks The most popular DRL algorithms for learning and problem solving Evolutionary algorithms for curiosity and multi-agent learning All examples available as Jupyter Notebooks About the reader For readers with intermediate skills in Python and deep learning. About the author Alexander Zai is a machine learning engineer at Amazon AI. Brandon Brown is a machine learning and data analysis blogger. Table of Contents PART 1 - FOUNDATIONS 1. What is reinforcement learning? 2. Modeling reinforcement learning problems: Markov decision processes 3. Predicting the best states and actions: Deep Q-networks 4. Learning to pick the best policy: Policy gradient methods 5. Tackling more complex problems with actor-critic methods PART 2 - ABOVE AND BEYOND 6. Alternative optimization methods: Evolutionary algorithms 7. Distributional DQN: Getting the full story 8.Curiosity-driven exploration 9. Multi-agent reinforcement learning 10. Interpretable reinforcement learning: Attention and relational models 11. In conclusion: A review and roadmap

Proceedings of International Conference on Computational Intelligence

Download Proceedings of International Conference on Computational Intelligence PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819735262
Total Pages : 714 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of International Conference on Computational Intelligence by : Ritu Tiwari

Download or read book Proceedings of International Conference on Computational Intelligence written by Ritu Tiwari and published by Springer Nature. This book was released on with total page 714 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Learning Deep Architectures for AI

Download Learning Deep Architectures for AI PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601982941
Total Pages : 145 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Learning Deep Architectures for AI by : Yoshua Bengio

Download or read book Learning Deep Architectures for AI written by Yoshua Bengio and published by Now Publishers Inc. This book was released on 2009 with total page 145 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.

Foundations of Deep Reinforcement Learning

Download Foundations of Deep Reinforcement Learning PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0135172489
Total Pages : 629 pages
Book Rating : 4.1/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Deep Reinforcement Learning by : Laura Graesser

Download or read book Foundations of Deep Reinforcement Learning written by Laura Graesser and published by Addison-Wesley Professional. This book was released on 2019-11-20 with total page 629 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Contemporary Introduction to Deep Reinforcement Learning that Combines Theory and Practice Deep reinforcement learning (deep RL) combines deep learning and reinforcement learning, in which artificial agents learn to solve sequential decision-making problems. In the past decade deep RL has achieved remarkable results on a range of problems, from single and multiplayer games—such as Go, Atari games, and DotA 2—to robotics. Foundations of Deep Reinforcement Learning is an introduction to deep RL that uniquely combines both theory and implementation. It starts with intuition, then carefully explains the theory of deep RL algorithms, discusses implementations in its companion software library SLM Lab, and finishes with the practical details of getting deep RL to work. This guide is ideal for both computer science students and software engineers who are familiar with basic machine learning concepts and have a working understanding of Python. Understand each key aspect of a deep RL problem Explore policy- and value-based algorithms, including REINFORCE, SARSA, DQN, Double DQN, and Prioritized Experience Replay (PER) Delve into combined algorithms, including Actor-Critic and Proximal Policy Optimization (PPO) Understand how algorithms can be parallelized synchronously and asynchronously Run algorithms in SLM Lab and learn the practical implementation details for getting deep RL to work Explore algorithm benchmark results with tuned hyperparameters Understand how deep RL environments are designed Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Hands-On Reinforcement Learning with Python

Download Hands-On Reinforcement Learning with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 178883691X
Total Pages : 309 pages
Book Rating : 4.7/5 (888 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Reinforcement Learning with Python by : Sudharsan Ravichandiran

Download or read book Hands-On Reinforcement Learning with Python written by Sudharsan Ravichandiran and published by Packt Publishing Ltd. This book was released on 2018-06-28 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on guide enriched with examples to master deep reinforcement learning algorithms with Python Key Features Your entry point into the world of artificial intelligence using the power of Python An example-rich guide to master various RL and DRL algorithms Explore various state-of-the-art architectures along with math Book Description Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence. What you will learn Understand the basics of reinforcement learning methods, algorithms, and elements Train an agent to walk using OpenAI Gym and Tensorflow Understand the Markov Decision Process, Bellman’s optimality, and TD learning Solve multi-armed-bandit problems using various algorithms Master deep learning algorithms, such as RNN, LSTM, and CNN with applications Build intelligent agents using the DRQN algorithm to play the Doom game Teach agents to play the Lunar Lander game using DDPG Train an agent to win a car racing game using dueling DQN Who this book is for If you’re a machine learning developer or deep learning enthusiast interested in artificial intelligence and want to learn about reinforcement learning from scratch, this book is for you. Some knowledge of linear algebra, calculus, and the Python programming language will help you understand the concepts covered in this book.