Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Penalty Modified Barrier Method For Large Scale Quadratic Programming
Download A Penalty Modified Barrier Method For Large Scale Quadratic Programming full books in PDF, epub, and Kindle. Read online A Penalty Modified Barrier Method For Large Scale Quadratic Programming ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :Stanford University. Department of Operations Research. Systems Optimization Laboratory Publisher : ISBN 13 : Total Pages :142 pages Book Rating :4.F/5 ( download)
Book Synopsis Barrier Methods for Large-scale Quadratic Programming by : Stanford University. Department of Operations Research. Systems Optimization Laboratory
Download or read book Barrier Methods for Large-scale Quadratic Programming written by Stanford University. Department of Operations Research. Systems Optimization Laboratory and published by . This book was released on 1991 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Large Scale Optimization by : William W. Hager
Download or read book Large Scale Optimization written by William W. Hager and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: On February 15-17, 1993, a conference on Large Scale Optimization, hosted by the Center for Applied Optimization, was held at the University of Florida. The con ference was supported by the National Science Foundation, the U. S. Army Research Office, and the University of Florida, with endorsements from SIAM, MPS, ORSA and IMACS. Forty one invited speakers presented papers on mathematical program ming and optimal control topics with an emphasis on algorithm development, real world applications and numerical results. Participants from Canada, Japan, Sweden, The Netherlands, Germany, Belgium, Greece, and Denmark gave the meeting an important international component. At tendees also included representatives from IBM, American Airlines, US Air, United Parcel Serice, AT & T Bell Labs, Thinking Machines, Army High Performance Com puting Research Center, and Argonne National Laboratory. In addition, the NSF sponsored attendance of thirteen graduate students from universities in the United States and abroad. Accurate modeling of scientific problems often leads to the formulation of large scale optimization problems involving thousands of continuous and/or discrete vari ables. Large scale optimization has seen a dramatic increase in activities in the past decade. This has been a natural consequence of new algorithmic developments and of the increased power of computers. For example, decomposition ideas proposed by G. Dantzig and P. Wolfe in the 1960's, are now implement able in distributed process ing systems, and today many optimization codes have been implemented on parallel machines.
Book Synopsis Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology by : Neculai Andrei
Download or read book Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology written by Neculai Andrei and published by Springer. This book was released on 2017-12-04 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the theoretical details and computational performances of algorithms used for solving continuous nonlinear optimization applications imbedded in GAMS. Aimed toward scientists and graduate students who utilize optimization methods to model and solve problems in mathematical programming, operations research, business, engineering, and industry, this book enables readers with a background in nonlinear optimization and linear algebra to use GAMS technology to understand and utilize its important capabilities to optimize algorithms for modeling and solving complex, large-scale, continuous nonlinear optimization problems or applications. Beginning with an overview of constrained nonlinear optimization methods, this book moves on to illustrate key aspects of mathematical modeling through modeling technologies based on algebraically oriented modeling languages. Next, the main feature of GAMS, an algebraically oriented language that allows for high-level algebraic representation of mathematical optimization models, is introduced to model and solve continuous nonlinear optimization applications. More than 15 real nonlinear optimization applications in algebraic and GAMS representation are presented which are used to illustrate the performances of the algorithms described in this book. Theoretical and computational results, methods, and techniques effective for solving nonlinear optimization problems, are detailed through the algorithms MINOS, KNITRO, CONOPT, SNOPT and IPOPT which work in GAMS technology.
Book Synopsis Linear Algebra for Large Scale and Real-Time Applications by : M.S. Moonen
Download or read book Linear Algebra for Large Scale and Real-Time Applications written by M.S. Moonen and published by Springer Science & Business Media. This book was released on 2013-11-09 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the NATO Advanced Study Institute, Leuven, Belgium, August 3-14, 1992
Book Synopsis Introduction to Continuous Optimization by : Roman A. Polyak
Download or read book Introduction to Continuous Optimization written by Roman A. Polyak and published by Springer Nature. This book was released on 2021-04-29 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained monograph presents the reader with an authoritative view of Continuous Optimization, an area of mathematical optimization that has experienced major developments during the past 40 years. The book contains results which have not yet been covered in a systematic way as well as a summary of results on NR theory and methods developed over the last several decades. The readership is aimed to graduate students in applied mathematics, computer science, economics, as well as researchers working in optimization and those applying optimization methods for solving real life problems. Sufficient exercises throughout provide graduate students and instructors with practical utility in a two-semester course in Continuous Optimization. The topical coverage includes interior point methods, self-concordance theory and related complexity issues, first and second order methods with accelerated convergence, nonlinear rescaling (NR) theory and exterior point methods, just to mention a few. The book contains a unified approach to both interior and exterior point methods with emphasis of the crucial duality role. One of the main achievements of the book shows what makes the exterior point methods numerically attractive and why. The book is composed in five parts. The first part contains the basics of calculus, convex analysis, elements of unconstrained optimization, as well as classical results of linear and convex optimization. The second part contains the basics of self-concordance theory and interior point methods, including complexity results for LP, QP, and QP with quadratic constraint, semidefinite and conic programming. In the third part, the NR and Lagrangian transformation theories are considered and exterior point methods are described. Three important problems in finding equilibrium are considered in the fourth part. In the fifth and final part of the book, several important applications arising in economics, structural optimization, medicine, statistical learning theory, and more, are detailed. Numerical results, obtained by solving a number of real life and test problems, are also provided.
Book Synopsis Nonlinear Programming by : Anthony V. Fiacco
Download or read book Nonlinear Programming written by Anthony V. Fiacco and published by SIAM. This book was released on 1990-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent interest in interior point methods generated by Karmarkar's Projective Scaling Algorithm has created a new demand for this book because the methods that have followed from Karmarkar's bear a close resemblance to those described. There is no other source for the theoretical background of the logarithmic barrier function and other classical penalty functions. Analyzes in detail the "central" or "dual" trajectory used by modern path following and primal/dual methods for convex and general linear programming. As researchers begin to extend these methods to convex and general nonlinear programming problems, this book will become indispensable to them.
Book Synopsis Modern Numerical Nonlinear Optimization by : Neculai Andrei
Download or read book Modern Numerical Nonlinear Optimization written by Neculai Andrei and published by Springer Nature. This book was released on 2022-10-18 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes a thorough theoretical and computational analysis of unconstrained and constrained optimization algorithms and combines and integrates the most recent techniques and advanced computational linear algebra methods. Nonlinear optimization methods and techniques have reached their maturity and an abundance of optimization algorithms are available for which both the convergence properties and the numerical performances are known. This clear, friendly, and rigorous exposition discusses the theory behind the nonlinear optimization algorithms for understanding their properties and their convergence, enabling the reader to prove the convergence of his/her own algorithms. It covers cases and computational performances of the most known modern nonlinear optimization algorithms that solve collections of unconstrained and constrained optimization test problems with different structures, complexities, as well as those with large-scale real applications. The book is addressed to all those interested in developing and using new advanced techniques for solving large-scale unconstrained or constrained complex optimization problems. Mathematical programming researchers, theoreticians and practitioners in operations research, practitioners in engineering and industry researchers, as well as graduate students in mathematics, Ph.D. and master in mathematical programming will find plenty of recent information and practical approaches for solving real large-scale optimization problems and applications.
Book Synopsis Online Optimization of Large Scale Systems by : Martin Grötschel
Download or read book Online Optimization of Large Scale Systems written by Martin Grötschel and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: In its thousands of years of history, mathematics has made an extraordinary ca reer. It started from rules for bookkeeping and computation of areas to become the language of science. Its potential for decision support was fully recognized in the twentieth century only, vitally aided by the evolution of computing and communi cation technology. Mathematical optimization, in particular, has developed into a powerful machinery to help planners. Whether costs are to be reduced, profits to be maximized, or scarce resources to be used wisely, optimization methods are available to guide decision making. Opti mization is particularly strong if precise models of real phenomena and data of high quality are at hand - often yielding reliable automated control and decision proce dures. But what, if the models are soft and not all data are around? Can mathematics help as well? This book addresses such issues, e. g. , problems of the following type: - An elevator cannot know all transportation requests in advance. In which order should it serve the passengers? - Wing profiles of aircrafts influence the fuel consumption. Is it possible to con tinuously adapt the shape of a wing during the flight under rapidly changing conditions? - Robots are designed to accomplish specific tasks as efficiently as possible. But what if a robot navigates in an unknown environment? - Energy demand changes quickly and is not easily predictable over time. Some types of power plants can only react slowly.
Book Synopsis Large-Scale Optimization with Applications by : Lorenz T. Biegler
Download or read book Large-Scale Optimization with Applications written by Lorenz T. Biegler and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 339 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by specialists in optimization and practitioners in the fields of aerospace engineering, chemical engineering, and fluid and solid mechanics, the major themes include an assessment of the state of the art in optimization algorithms as well as challenging applications in design and control, in the areas of process engineering and systems with partial differential equation models.
Book Synopsis IEEE TENCOM '02 [sic] by : Baozong Yuan
Download or read book IEEE TENCOM '02 [sic] written by Baozong Yuan and published by I E E E. This book was released on 2002 with total page 900 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Interior-point Polynomial Algorithms in Convex Programming by : Yurii Nesterov
Download or read book Interior-point Polynomial Algorithms in Convex Programming written by Yurii Nesterov and published by SIAM. This book was released on 1994-01-01 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.
Book Synopsis Practical Optimization by : Philip E. Gill
Download or read book Practical Optimization written by Philip E. Gill and published by SIAM. This book was released on 2019-12-16 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the intervening years since this book was published in 1981, the field of optimization has been exceptionally lively. This fertility has involved not only progress in theory, but also faster numerical algorithms and extensions into unexpected or previously unknown areas such as semidefinite programming. Despite these changes, many of the important principles and much of the intuition can be found in this Classics version of Practical Optimization. This book provides model algorithms and pseudocode, useful tools for users who prefer to write their own code as well as for those who want to understand externally provided code. It presents algorithms in a step-by-step format, revealing the overall structure of the underlying procedures and thereby allowing a high-level perspective on the fundamental differences. And it contains a wealth of techniques and strategies that are well suited for optimization in the twenty-first century, and particularly in the now-flourishing fields of data science, big data, and machine learning. Practical Optimization is appropriate for advanced undergraduates, graduate students, and researchers interested in methods for solving optimization problems.
Book Synopsis Large-Scale Nonlinear Optimization by : Gianni Pillo
Download or read book Large-Scale Nonlinear Optimization written by Gianni Pillo and published by Springer Science & Business Media. This book was released on 2006-06-03 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews and discusses recent advances in the development of methods and algorithms for nonlinear optimization and its applications, focusing on the large-dimensional case, the current forefront of much research. Individual chapters, contributed by eminent authorities, provide an up-to-date overview of the field from different and complementary standpoints, including theoretical analysis, algorithmic development, implementation issues and applications.
Book Synopsis Topics in Nonconvex Optimization by : Shashi K. Mishra
Download or read book Topics in Nonconvex Optimization written by Shashi K. Mishra and published by Springer Science & Business Media. This book was released on 2011-05-21 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonconvex Optimization is a multi-disciplinary research field that deals with the characterization and computation of local/global minima/maxima of nonlinear, nonconvex, nonsmooth, discrete and continuous functions. Nonconvex optimization problems are frequently encountered in modeling real world systems for a very broad range of applications including engineering, mathematical economics, management science, financial engineering, and social science. This contributed volume consists of selected contributions from the Advanced Training Programme on Nonconvex Optimization and Its Applications held at Banaras Hindu University in March 2009. It aims to bring together new concepts, theoretical developments, and applications from these researchers. Both theoretical and applied articles are contained in this volume which adds to the state of the art research in this field. Topics in Nonconvex Optimization is suitable for advanced graduate students and researchers in this area.
Book Synopsis Linear and Nonlinear Programming by : David G. Luenberger
Download or read book Linear and Nonlinear Programming written by David G. Luenberger and published by Springer Science & Business Media. This book was released on 2008-06-20 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition of the classic textbook in Optimization has been fully revised and updated. It comprehensively covers modern theoretical insights in this crucial computing area, and will be required reading for analysts and operations researchers in a variety of fields. The book connects the purely analytical character of an optimization problem, and the behavior of algorithms used to solve it. Now, the third edition has been completely updated with recent Optimization Methods. The book also has a new co-author, Yinyu Ye of California’s Stanford University, who has written lots of extra material including some on Interior Point Methods.
Book Synopsis Interior Point Methods in Mathematical Programming by : Kurt M. Anstreicher
Download or read book Interior Point Methods in Mathematical Programming written by Kurt M. Anstreicher and published by . This book was released on 1996 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers by : Stephen Boyd
Download or read book Distributed Optimization and Statistical Learning Via the Alternating Direction Method of Multipliers written by Stephen Boyd and published by Now Publishers Inc. This book was released on 2011 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surveys the theory and history of the alternating direction method of multipliers, and discusses its applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others.