Sobolev Spaces on Metric Measure Spaces

Download Sobolev Spaces on Metric Measure Spaces PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107092345
Total Pages : 447 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces on Metric Measure Spaces by : Juha Heinonen

Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This coherent treatment from first principles is an ideal introduction for graduate students and a useful reference for experts.

Functional Analysis, Sobolev Spaces and Partial Differential Equations

Download Functional Analysis, Sobolev Spaces and Partial Differential Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387709142
Total Pages : 600 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Functional Analysis, Sobolev Spaces and Partial Differential Equations by : Haim Brezis

Download or read book Functional Analysis, Sobolev Spaces and Partial Differential Equations written by Haim Brezis and published by Springer Science & Business Media. This book was released on 2010-11-02 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.

Maximal Function Methods for Sobolev Spaces

Download Maximal Function Methods for Sobolev Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470465752
Total Pages : 354 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Maximal Function Methods for Sobolev Spaces by : Juha Kinnunen

Download or read book Maximal Function Methods for Sobolev Spaces written by Juha Kinnunen and published by American Mathematical Soc.. This book was released on 2021-08-02 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advances in maximal function methods related to Poincaré and Sobolev inequalities, pointwise estimates and approximation for Sobolev functions, Hardy's inequalities, and partial differential equations. Capacities are needed for fine properties of Sobolev functions and characterization of Sobolev spaces with zero boundary values. The authors consider several uniform quantitative conditions that are self-improving, such as Hardy's inequalities, capacity density conditions, and reverse Hölder inequalities. They also study Muckenhoupt weight properties of distance functions and combine these with weighted norm inequalities; notions of dimension are then used to characterize density conditions and to give sufficient and necessary conditions for Hardy's inequalities. At the end of the book, the theory of weak solutions to the p p-Laplace equation and the use of maximal function techniques is this context are discussed. The book is directed to researchers and graduate students interested in applications of geometric and harmonic analysis in Sobolev spaces and partial differential equations.

New Trends on Analysis and Geometry in Metric Spaces

Download New Trends on Analysis and Geometry in Metric Spaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030841413
Total Pages : 312 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis New Trends on Analysis and Geometry in Metric Spaces by : Fabrice Baudoin

Download or read book New Trends on Analysis and Geometry in Metric Spaces written by Fabrice Baudoin and published by Springer Nature. This book was released on 2022-02-04 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.

Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces

Download Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821833839
Total Pages : 434 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces by : Pascal Auscher

Download or read book Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces written by Pascal Auscher and published by American Mathematical Soc.. This book was released on 2003 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the expanded lecture notes of courses taught at the Emile Borel Centre of the Henri Poincare Institute (Paris). In the book, leading experts introduce recent research in their fields. The unifying theme is the study of heat kernels in various situations using related geometric and analytic tools. Topics include analysis of complex-coefficient elliptic operators, diffusions on fractals and on infinite-dimensional groups, heat kernel and isoperimetry on Riemannian manifolds, heat kernels and infinite dimensional analysis, diffusions and Sobolev-type spaces on metric spaces, quasi-regular mappings and $p$-Laplace operators, heat kernel and spherical inversion on $SL 2(C)$, random walks and spectral geometry on crystal lattices, isoperimetric and isocapacitary inequalities, and generating function techniques for random walks on graphs. This volume is suitable for graduate students and research mathematicians interested in random processes and analysis on manifolds.

A First Course in Sobolev Spaces

Download A First Course in Sobolev Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821847686
Total Pages : 626 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Sobolev Spaces by : Giovanni Leoni

Download or read book A First Course in Sobolev Spaces written by Giovanni Leoni and published by American Mathematical Soc.. This book was released on 2009 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces are a fundamental tool in the modern study of partial differential equations. In this book, Leoni takes a novel approach to the theory by looking at Sobolev spaces as the natural development of monotone, absolutely continuous, and BV functions of one variable. In this way, the majority of the text can be read without the prerequisite of a course in functional analysis. The first part of this text is devoted to studying functions of one variable. Several of the topics treated occur in courses on real analysis or measure theory. Here, the perspective emphasizes their applications to Sobolev functions, giving a very different flavor to the treatment. This elementary start to the book makes it suitable for advanced undergraduates or beginning graduate students. Moreover, the one-variable part of the book helps to develop a solid background that facilitates the reading and understanding of Sobolev functions of several variables. The second part of the book is more classical, although it also contains some recent results. Besides the standard results on Sobolev functions, this part of the book includes chapters on BV functions, symmetric rearrangement, and Besov spaces. The book contains over 200 exercises.

Nonlinear Potential Theory on Metric Spaces

Download Nonlinear Potential Theory on Metric Spaces PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190999
Total Pages : 422 pages
Book Rating : 4.1/5 (99 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Potential Theory on Metric Spaces by : Anders Björn

Download or read book Nonlinear Potential Theory on Metric Spaces written by Anders Björn and published by European Mathematical Society. This book was released on 2011 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: The $p$-Laplace equation is the main prototype for nonlinear elliptic problems and forms a basis for various applications, such as injection moulding of plastics, nonlinear elasticity theory, and image processing. Its solutions, called p-harmonic functions, have been studied in various contexts since the 1960s, first on Euclidean spaces and later on Riemannian manifolds, graphs, and Heisenberg groups. Nonlinear potential theory of p-harmonic functions on metric spaces has been developing since the 1990s and generalizes and unites these earlier theories. This monograph gives a unified treatment of the subject and covers most of the available results in the field, so far scattered over a large number of research papers. The aim is to serve both as an introduction to the area for interested readers and as a reference text for active researchers. The presentation is rather self contained, but it is assumed that readers know measure theory and functional analysis. The first half of the book deals with Sobolev type spaces, so-called Newtonian spaces, based on upper gradients on general metric spaces. In the second half, these spaces are used to study p-harmonic functions on metric spaces, and a nonlinear potential theory is developed under some additional, but natural, assumptions on the underlying metric space. Each chapter contains historical notes with relevant references, and an extensive index is provided at the end of the book.

Analysis and Geometry of Metric Measure Spaces

Download Analysis and Geometry of Metric Measure Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821894188
Total Pages : 241 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Analysis and Geometry of Metric Measure Spaces by : Galia Devora Dafni

Download or read book Analysis and Geometry of Metric Measure Spaces written by Galia Devora Dafni and published by American Mathematical Soc.. This book was released on 2013 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains lecture notes from most of the courses presented at the 50th anniversary edition of the Seminaire de Mathematiques Superieure in Montreal. This 2011 summer school was devoted to the analysis and geometry of metric measure spaces, and featured much interplay between this subject and the emergent topic of optimal transportation.

Fractal Geometry and Stochastics VI

Download Fractal Geometry and Stochastics VI PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030596494
Total Pages : 307 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Fractal Geometry and Stochastics VI by : Uta Freiberg

Download or read book Fractal Geometry and Stochastics VI written by Uta Freiberg and published by Springer Nature. This book was released on 2021-03-23 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of contributions originates from the well-established conference series "Fractal Geometry and Stochastics" which brings together researchers from different fields using concepts and methods from fractal geometry. Carefully selected papers from keynote and invited speakers are included, both discussing exciting new trends and results and giving a gentle introduction to some recent developments. The topics covered include Assouad dimensions and their connection to analysis, multifractal properties of functions and measures, renewal theorems in dynamics, dimensions and topology of random discrete structures, self-similar trees, p-hyperbolicity, phase transitions from continuous to discrete scale invariance, scaling limits of stochastic processes, stemi-stable distributions and fractional differential equations, and diffusion limited aggregation. Representing a rich source of ideas and a good starting point for more advanced topics in fractal geometry, the volume will appeal to both established experts and newcomers.

Lectures on Analysis on Metric Spaces

Download Lectures on Analysis on Metric Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461301319
Total Pages : 149 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Analysis on Metric Spaces by : Juha Heinonen

Download or read book Lectures on Analysis on Metric Spaces written by Juha Heinonen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 149 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.

Theory of Besov Spaces

Download Theory of Besov Spaces PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811308365
Total Pages : 964 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Theory of Besov Spaces by : Yoshihiro Sawano

Download or read book Theory of Besov Spaces written by Yoshihiro Sawano and published by Springer. This book was released on 2018-11-04 with total page 964 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a self-contained textbook of the theory of Besov spaces and Triebel–Lizorkin spaces oriented toward applications to partial differential equations and problems of harmonic analysis. These include a priori estimates of elliptic differential equations, the T1 theorem, pseudo-differential operators, the generator of semi-group and spaces on domains, and the Kato problem. Various function spaces are introduced to overcome the shortcomings of Besov spaces and Triebel–Lizorkin spaces as well. The only prior knowledge required of readers is familiarity with integration theory and some elementary functional analysis.Illustrations are included to show the complicated way in which spaces are defined. Owing to that complexity, many definitions are required. The necessary terminology is provided at the outset, and the theory of distributions, L^p spaces, the Hardy–Littlewood maximal operator, and the singular integral operators are called upon. One of the highlights is that the proof of the Sobolev embedding theorem is extremely simple. There are two types for each function space: a homogeneous one and an inhomogeneous one. The theory of function spaces, which readers usually learn in a standard course, can be readily applied to the inhomogeneous one. However, that theory is not sufficient for a homogeneous space; it needs to be reinforced with some knowledge of the theory of distributions. This topic, however subtle, is also covered within this volume. Additionally, related function spaces—Hardy spaces, bounded mean oscillation spaces, and Hölder continuous spaces—are defined and discussed, and it is shown that they are special cases of Besov spaces and Triebel–Lizorkin spaces.

Sobolev Spaces

Download Sobolev Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642155642
Total Pages : 882 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Sobolev Spaces by : Vladimir Maz'ya

Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2011-02-11 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.

Potential Theory on Sierpiński Carpets

Download Potential Theory on Sierpiński Carpets PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030508056
Total Pages : 192 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Potential Theory on Sierpiński Carpets by : Dimitrios Ntalampekos

Download or read book Potential Theory on Sierpiński Carpets written by Dimitrios Ntalampekos and published by Springer Nature. This book was released on 2020-09-01 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained book lays the foundations for a systematic understanding of potential theoretic and uniformization problems on fractal Sierpiński carpets, and proposes a theory based on the latest developments in the field of analysis on metric spaces. The first part focuses on the development of an innovative theory of harmonic functions that is suitable for Sierpiński carpets but differs from the classical approach of potential theory in metric spaces. The second part describes how this theory is utilized to prove a uniformization result for Sierpiński carpets. This book is intended for researchers in the fields of potential theory, quasiconformal geometry, geometric group theory, complex dynamics, geometric function theory and PDEs.

Bruhat–Tits Theory

Download Bruhat–Tits Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108935028
Total Pages : 750 pages
Book Rating : 4.1/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Bruhat–Tits Theory by : Tasho Kaletha

Download or read book Bruhat–Tits Theory written by Tasho Kaletha and published by Cambridge University Press. This book was released on 2022-12-31 with total page 750 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bruhat-Tits theory that suffices for the main applications. Part III treats modern topics that have become important in current research. Part IV provides a few sample applications of the theory. The appendices contain further details on the topic of integral models.

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Download Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813272899
Total Pages : 5393 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) by : Boyan Sirakov

Download or read book Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes) written by Boyan Sirakov and published by World Scientific. This book was released on 2019-02-27 with total page 5393 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.

Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below

Download Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470427656
Total Pages : 174 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below by : Nicola Gigli

Download or read book Nonsmooth Differential Geometry-An Approach Tailored for Spaces with Ricci Curvature Bounded from Below written by Nicola Gigli and published by American Mathematical Soc.. This book was released on 2018-02-23 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author discusses in which sense general metric measure spaces possess a first order differential structure. Building on this, spaces with Ricci curvature bounded from below a second order calculus can be developed, permitting the author to define Hessian, covariant/exterior derivatives and Ricci curvature.

Lectures on Nonsmooth Differential Geometry

Download Lectures on Nonsmooth Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030386139
Total Pages : 212 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Nonsmooth Differential Geometry by : Nicola Gigli

Download or read book Lectures on Nonsmooth Differential Geometry written by Nicola Gigli and published by Springer Nature. This book was released on 2020-02-10 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces – known as RCD spaces – satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of “infinitesimally Hilbertian” metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.