A Microfluidic Hydrogen Generator for Fuel Cell Applications

Download A Microfluidic Hydrogen Generator for Fuel Cell Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (316 download)

DOWNLOAD NOW!


Book Synopsis A Microfluidic Hydrogen Generator for Fuel Cell Applications by : C. Harvey

Download or read book A Microfluidic Hydrogen Generator for Fuel Cell Applications written by C. Harvey and published by . This book was released on 2003 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A study of the reaction rates, heat and mass transfer and flow, in and from a methanol reforming catalytic micro-reactor fabricated on a silicon wafer is presented. Comparison of computed and measured conversion efficiencies are shown to be favorable.

A Microfluidic Hydrogen Generator

Download A Microfluidic Hydrogen Generator PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 74 pages
Book Rating : 4.:/5 (726 download)

DOWNLOAD NOW!


Book Synopsis A Microfluidic Hydrogen Generator by : Nathaniel D. Kroodsma

Download or read book A Microfluidic Hydrogen Generator written by Nathaniel D. Kroodsma and published by . This book was released on 2011 with total page 74 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Microfluidic Fuel Cells and Batteries

Download Microfluidic Fuel Cells and Batteries PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319063464
Total Pages : 81 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Microfluidic Fuel Cells and Batteries by : Erik Kjeang

Download or read book Microfluidic Fuel Cells and Batteries written by Erik Kjeang and published by Springer. This book was released on 2014-06-14 with total page 81 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is for this book to be a ‘one-stop shop’ for current and prospective researchers in the general area of membraneless, microfluidic electrochemical energy conversion. As the overall goal of the book is to provide a comprehensive resource for both research and technology development, it features extensive descriptions of the underlying fundamental theory, fabrication methods, and cell design principles, as well as a thorough review of previous contributions in this field and a future outlook with recommendations for further work. It is hoped that the content will entice and enable new research groups and engineers to rapidly gain traction in their own laboratories towards the development of next generation microfluidic electrochemical cells.

Microfluidic Platforms for the Investigation of Fuel Cell Catalysts and Electrodes

Download Microfluidic Platforms for the Investigation of Fuel Cell Catalysts and Electrodes PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (776 download)

DOWNLOAD NOW!


Book Synopsis Microfluidic Platforms for the Investigation of Fuel Cell Catalysts and Electrodes by : Fikile R. Brushett

Download or read book Microfluidic Platforms for the Investigation of Fuel Cell Catalysts and Electrodes written by Fikile R. Brushett and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear need exists for novel approaches to producing and utilizing energy in more efficient ways, in light of society0́9s ever increasing demand as well as growing concerns with respect to climate change related to CO2 emissions. The development of low temperature fuel cell technologies will continue to play an important role in many alternative energy conversion strategies, especially for portable electronics and automotive applications. However, widespread commercialization of fuel cell technologies has yet to be achieved due to a combination of high costs, poor durability and, system performance limitations (Chapter 1). Developing a better understanding of the complex interplay of electrochemical, transport, and degradation processes that govern the performance and durability of novel fuel cell components, particularly catalysts and electrodes, within operating fuel cells is critical to designing robust, inexpensive configurations that are required for commercial introduction. Such detailed in-situ investigations of individual electrode processes are complicated by other factors such as water management, uneven performance across electrodes, and temperature gradients. Indeed, too many processes are interdependent on the same few variable parameters, necessitating the development of novel analytical platforms with more degrees of freedom. Previously, membraneless microfluidic fuel cells have been developed to address some of the aforementioned fuel cell challenges (Chapter 2). At the microscale, the laminar nature of fluid flow eliminates the need for a physical barrier, such as a stationary membrane, while still allowing ionic transport between electrodes. This enables the development of many unique and innovative fuel cell designs. In addition to addressing water management and fuel crossover issues, these laminar flow-based systems allow for the independent specification of individual stream compositions (e.g., pH). Furthermore, the use of a liquid electrolyte enables the simple in-situ analysis of individual electrode performance using an off-the-shelf reference electrode. These advantages can be leveraged to develop microfluidic fuel cells as versatile electro-analytical platforms for the characterization and optimization of catalysts and electrodes for both membrane- and membraneless fuel cells applications. To this end, a microfluidic hydrogen-oxygen (H2/O2) fuel cell has been developed which utilizes a flowing liquid electrolyte instead of a stationary polymeric membrane. For analytical investigations, the flowing stream (i) enables autonomous control over electrolyte parameters (i.e., pH, composition) and consequently the local electrode environments, as well as (ii) allows for the independent in-situ analyses of catalyst and/or electrode performance and degradation characteristics via an external reference electrode (e.g., Ag/AgCl). Thus, this microfluidic analytical platform enables a high number of experimental degrees of freedom, previously limited to a three-electrode electrochemical cell, to be employed in the construct of working fuel cell. Using this microfluidic H2/O2 fuel cell as a versatile analytical platform, the focus of this work is to provide critical insight into the following research areas: 0́Ø Identify the key processes that govern the electrode performance and durability in alkaline fuel cells as a function of preparation methods and operating parameters (Chapter 3). 0́Ø Determine the suitability of a novel Pt-free oxygen reduction reaction catalyst embedded in gas diffusion electrodes for acidic and alkaline fuel cell applications (Chapter 4). 0́Ø Establish electrode structure-activity relationships by aligning in-situ electrochemical analyses with ex-situ microtomographic (MicroCT) structural analyses (Chapter 5). 0́Ø Investigate the feasibility and utility of a microfluidic-based vapor feed direct methanol fuel cell (VF-DMFC) configuration as a power source for portable applications (Chapter 6). In all these areas, the information garnered from these in-situ analytical platforms will advance the development of more robust and cost-effective electrode configurations and thus more durable and commercially-viable fuel cell systems (both membrane-based and membraneless).

Microfluidics for Fuel Cell Applications

Download Microfluidics for Fuel Cell Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Microfluidics for Fuel Cell Applications by : Ian Stewart

Download or read book Microfluidics for Fuel Cell Applications written by Ian Stewart and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work, a microfluidics approach is applied to two fuel cell related projects; the study of deformation and contact angle hysteresis on water invasion in porous media and the introduction of bubble fuel cells. This work was carried out as collaboration between the microfluidics and CFCE groups in the Department of Mechanical Engineering at the University of Victoria. Understanding water transport in the porous media of Polymer Electrolyte Membrane fuel cells is crucial to improve performance. One popular technique for both numeric simulations and experimental micromodels is pore network modeling, which predicts flow behavior as a function of capillary number and relative viscosity. An open question is the validity of pore network modeling for the small highly non-wetting pores in fuel cell porous media. In particular, current pore network models do not account for deformable media or contact angle hysteresis. We developed and tested a deformable microfluidic network with an average hydraulic diameter of 5?m, the smallest sizes to date. At a capillary number and relative viscosity for which conventional theory would predict strong capillary fingering behavior, we report almost complete saturation. This work represents the first experimental pore network model to demonstrate the combined effects of material deformation and contact angle hysteresis. Microfluidic fuel cells are small scale energy conversion devices that take advantage of microscale transport phenomena to reduce size, complexity and cost. They are particularly attractive for portable electronic devices, due to their potentially high energy density. The current state of the art microfluidic fuel cell uses the laminar flow of liquid fuel and oxidant as a membrane. Their performance is plagued by a number of factors including mixing, concentration polarization, ohmic polarization and low fuel utilization. In this work, a new type of microfluidic fuel cell is conceptualized and developed that uses bubbles to transport fuel and oxidant within an electrolyte. Bubbles offer a phase boundary to prevent mixing, higher rates of diffusion, and independent electrolyte selection. One particular bubble fuel cell design produces alternating current. This work presents, to our knowledge, the first microfluidic chip to produce bubbles of alternating composition in a single channel, class of fuel cells that use bubbles to transport fuel and oxidant and fuel cell capable of generating alternating current.

Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells

Download Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells by : Jon McKechnie

Download or read book Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells written by Jon McKechnie and published by . This book was released on 2006 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is part of an ongoing collaborative research project focused on the development of microstructured enzymatic fuel cells. Both enzymatic fuel cells and co-laminar fuel cells are, more generally, varieties of microfluidic membraneless fuel cells. A primary goal of this particular work is the establishment of microfabrication capabilities to develop these technologies. Rapid prototyping soft lithography capabilities are established in-house and protocols specific to the lab equipment are developed. These prototyping methods are then adapted for the fabrication of microfluidic membraneless fuel cells. Fabrication techniques using polymeric stencils and photoresist-based channel structures are developed to enable electrode patterning and current collection in the enzymatic and co-laminar fuel cells of interest. A variety of electrode patterning methods are developed. Gold electrode patterning by etching and lift-off techniques are investigated for the patterning of base electrode layers. An in-situ gold electrode patterning methodology is designed and tested, eliminating the need for precision alignment during device assembly. Carbon electrode patterning methods are developed for use in a vanadium-based colaminar fuel cell. Thin-film carbon electrodes are fabricated using a mixture of carbon microparticles and a polymeric binder. Alternatively, graphite rods are investigated for use as electrodes due to their high conductivity and chemical stability. The integration of channel structure and electrode fabrication methods is investigated to establish compatibilities and facilitate the assembly of functional devices. In addition to the development of these methods, the application of co-laminar streaming to microfabrication is explored through the development of a dynamic microfluidic photomasking device.

Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells

Download Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells by : Jon McKechnie

Download or read book Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells written by Jon McKechnie and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is part of an ongoing collaborative research project focused on the development of microstructured enzymatic fuel cells. Both enzymatic fuel cells and co-laminar fuel cells are, more generally, varieties of microfluidic membraneless fuel cells. A primary goal of this particular work is the establishment of microfabrication capabilities to develop these technologies. Rapid prototyping soft lithography capabilities are established in-house and protocols specific to the lab equipment are developed. These prototyping methods are then adapted for the fabrication of microfluidic membraneless fuel cells. Fabrication techniques using polymeric stencils and photoresist-based channel structures are developed to enable electrode patterning and current collection in the enzymatic and co-laminar fuel cells of interest. A variety of electrode patterning methods are developed. Gold electrode patterning by etching and lift-off techniques are investigated for the patterning of base electrode layers. An in-situ gold electrode patterning methodology is designed and tested, eliminating the need for precision alignment during device assembly. Carbon electrode patterning methods are developed for use in a vanadium-based colaminar fuel cell. Thin-film carbon electrodes are fabricated using a mixture of carbon microparticles and a polymeric binder. Alternatively, graphite rods are investigated for use as electrodes due to their high conductivity and chemical stability. The integration of channel structure and electrode fabrication methods is investigated to establish compatibilities and facilitate the assembly of functional devices. In addition to the development of these methods, the application of co-laminar streaming to microfabrication is explored through the development of a dynamic microfluidic photomasking device.

Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells

Download Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (68 download)

DOWNLOAD NOW!


Book Synopsis Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells by :

Download or read book Fabrication of Microfluidic Devices with Application to Membraneless Fuel Cells written by and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is part of an ongoing collaborative research project focused on the development of microstructured enzymatic fuel cells. Both enzymatic fuel cells and co-laminar fuel cells are, more generally, varieties of microfluidic membraneless fuel cells. A primary goal of this particular work is the establishment of microfabrication capabilities to develop these technologies. Rapid prototyping soft lithography capabilities are established in-house and protocols specific to the lab equipment are developed. These prototyping methods are then adapted for the fabrication of microfluidic membraneless fuel cells. Fabrication techniques using polymeric stencils and photoresist-based channel structures are developed to enable electrode patterning and current collection in the enzymatic and co-laminar fuel cells of interest. A variety of electrode patterning methods are developed. Gold electrode patterning by etching and lift-off techniques are investigated for the patterning of base electrode layers. An in-situ gold electrode patterning methodology is designed and tested, eliminating the need for precision alignment during device assembly. Carbon electrode patterning methods are developed for use in a vanadium-based colaminar fuel cell. Thin-film carbon electrodes are fabricated using a mixture of carbon microparticles and a polymeric binder. Alternatively, graphite rods are investigated for use as electrodes due to their high conductivity and chemical stability. The integration of channel structure and electrode fabrication methods is investigated to establish compatibilities and facilitate the assembly of functional devices. In addition to the development of these methods, the application of co-laminar streaming to microfabrication is explored through the development of a dynamic microfluidic photomasking device.

Advances in Bioenergy and Microfluidic Applications

Download Advances in Bioenergy and Microfluidic Applications PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 012822634X
Total Pages : 486 pages
Book Rating : 4.1/5 (282 download)

DOWNLOAD NOW!


Book Synopsis Advances in Bioenergy and Microfluidic Applications by : Mohammad Reza Rahimpour

Download or read book Advances in Bioenergy and Microfluidic Applications written by Mohammad Reza Rahimpour and published by Elsevier. This book was released on 2021-02-02 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since fossil fuels suffer from dangerous side effects for the environment and their resources are limited, bioenergy attracted many attentions in various aspects as an alternative solution. Therefore, increasing number of researches are conducted every year and the processes updated frequently to make them more economic and industrially beneficial. Advances in Bioenergy and Microfluidic Applications reviews recent developments in this field and covers various advanced bio-applications, which rarely are reviewed elsewhere. The chapters are started from converting biomass to valuable products and continues with applications of biomass in water-treatment, novel sorbents and membranes, refineries, microfluidic devices and etc. The book covers various routes for gaining bioenergy from biomass. Their composition, carbon contents, heat production capacities and other important factors are reviewed in details in different chapters. Then, the processes for upgrading them directly and indirectly (using metabolic engineering and ultrasonic devices) to various fuels are explained. Each process is reviewed both technically and economically and the product analysis is given. Besides, the effect of various catalysts on increasing selectivity and productivity are taken into account. Biofuels are compared with fossil fuels and challenges in the way of bioenergy production are explained. Moreover, advanced bio-applications in membranes, adsorption, waste water treatment, microfluidic devices and etc. are introduced. This book provides a good insight about such bioprocesses and microfluidics devices for researchers, students, professors and related departments and industries that care about energy resources and curious about recent advances in related methods and technologies. Despite other books which review biomass chemistry and conversion, the current book emphasize on the application of biomass in the mentioned areas. Therefore, one can gain a better and more comprehensive insight by reading the book. - Describes energy production from biomass, biomass conversion, their advantages and limitations - Describes the application of biomass in membranes, sorbents, water-treatment, refineries, and microfluidic devices - Offers a future outlook of bioenergy production and possibility to apply in the industries

Nanofluidics and Microfluidics

Download Nanofluidics and Microfluidics PDF Online Free

Author :
Publisher : William Andrew
ISBN 13 : 1437744702
Total Pages : 313 pages
Book Rating : 4.4/5 (377 download)

DOWNLOAD NOW!


Book Synopsis Nanofluidics and Microfluidics by : Shaurya Prakash

Download or read book Nanofluidics and Microfluidics written by Shaurya Prakash and published by William Andrew. This book was released on 2014-01-16 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: To provide an interdisciplinary readership with the necessary toolkit to work with micro- and nanofluidics, this book provides basic theory, fundamentals of microfabrication, advanced fabrication methods, device characterization methods and detailed examples of applications of nanofluidics devices and systems. Case studies describing fabrication of complex micro- and nanoscale systems help the reader gain a practical understanding of developing and fabricating such systems. The resulting work covers the fundamentals, processes and applied challenges of functional engineered nanofluidic systems for a variety of different applications, including discussions of lab-on-chip, bio-related applications and emerging technologies for energy and environmental engineering. - The fundamentals of micro- and nanofluidic systems and micro- and nanofabrication techniques provide readers from a variety of academic backgrounds with the understanding required to develop new systems and applications. - Case studies introduce and illustrate state-of-the-art applications across areas, including lab-on-chip, energy and bio-based applications. - Prakash and Yeom provide readers with an essential toolkit to take micro- and nanofluidic applications out of the research lab and into commercial and laboratory applications.

Microfluidics in Membraneless Fuel Cells

Download Microfluidics in Membraneless Fuel Cells PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Microfluidics in Membraneless Fuel Cells by : Jesus A. Diaz-Real

Download or read book Microfluidics in Membraneless Fuel Cells written by Jesus A. Diaz-Real and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In the 1990s, the idea of developing miniaturized devices that integrate functions other than what normally are carried out at the laboratory level was conceived, and the so-called "lab-on-a-chip" (LOC) devices emerged as one of the most important research areas. LOC devices exhibit advantages related to the use of microfluidic channels such as small sample and reagent consumption, portability, low-power consumption, laminar flow, and higher surface area/volume ratio that enhances both thermal dissipation and electrochemical kinetics. Fuel cells are electrochemical devices that convert chemical energy to electrical energy. These are considered as one of the greener ways to generate electricity because typical fuel cells produce water and heat as the main reaction byproducts. The technical challenges to develop systems at the microscale and the advantages of microfluidics exhibited an important impact on fuel cells for several reasons, mainly related to avoid inherent problems of gaseous-based fuel cells. As a result, the birth of a new type of fuel cells as microfluidic fuel cells (MFCs) took place. The first microfluidic fuel cell was reported in 2002. This MFC was operated with liquid fuel/oxidant and had the advantage of the low laminar flow generated using a "Y" microfluidic channel to separate the anodic and cathodic streams, resulting in an energy conversion device that did not require a physical barrier to separate both streams. This electrochemical system originated a specific type of MFCs categorized as membraneless also called colaminar microfluidic fuel cells. Since that year, numerous works focused on the nature of fuels, oxidants and anodic/cathodic electrocatalysts, and cell designs have been reported. The limiting parameters of this kind of devices toward their use in portable applications are related to their low cell performances, small mass activity, and partial selectivity/durability of electrocatalysts. On the other hand, it has been observed that the cell design has a high effect on the cell performance due to internal cell resistances and the crossover effect. Furthermore, current technology is growing faster than last centuries and new microfabrication technologies are always emerging, allowing the development of smaller and more powerful microfluidic energy devices. In this chapter, the application of microfluidics in membraneless fuel cells is addressed in terms of evolution of cell designs of miniaturized microfluidic fuel cells as a result of new discoveries in microfabrication technology and the use of several fuels and electrocatalysts for specific and selective applications.

Microfluidic Platforms and Fundamental Electrocatalysis Studies for Fuel Cell Applications

Download Microfluidic Platforms and Fundamental Electrocatalysis Studies for Fuel Cell Applications PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1178 pages
Book Rating : 4.E/5 ( download)

DOWNLOAD NOW!


Book Synopsis Microfluidic Platforms and Fundamental Electrocatalysis Studies for Fuel Cell Applications by : Jamie Lee Cohen

Download or read book Microfluidic Platforms and Fundamental Electrocatalysis Studies for Fuel Cell Applications written by Jamie Lee Cohen and published by . This book was released on 2007 with total page 1178 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Advances in Sustainable Polymers

Download Advances in Sustainable Polymers PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9813298049
Total Pages : 483 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Advances in Sustainable Polymers by : Vimal Katiyar

Download or read book Advances in Sustainable Polymers written by Vimal Katiyar and published by Springer Nature. This book was released on 2019-11-05 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematic overview of the processing and applications of sustainable polymers. The volume covers recent advances in biomedical, food packaging, fuel cell, membrane, and other emerging applications. The book begins by addressing different sections of biomedical application including use of carbohydrate-based therapeutics, nanohybrids, nanohydrogels, bioresorbable polymers and their composites, polymer-grafted nanobiomaterials for biomedical devices and implants, nanofibres, and others. The second part of this book discusses various processing and packaging materials for food packaging applications. The last section discusses other emerging applications, including using microbial fuel cells for waste water treatment, microfluidic fuel cells for low power applications, among others. This volume will be relevant to researchers working to improve the properties of bio-based materials for their advanced application and wide commercialization.

Materials and Methods for Microfluidic Fuel Cells

Download Materials and Methods for Microfluidic Fuel Cells PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 207 pages
Book Rating : 4.:/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Materials and Methods for Microfluidic Fuel Cells by : Ben Nearingburg

Download or read book Materials and Methods for Microfluidic Fuel Cells written by Ben Nearingburg and published by . This book was released on 2014 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microfluidic fuel cell (MFC) devices are a promising route towards on-chip power generation for microfluidic and lab-on-a-chip systems. Current MFCs leverage fabrication techniques and materials that have been inherited from micromachining technology and macro-scale fuel cell devices. Both, these methods and materials can be costly and difficult to integrate into larger microfluidic networks or lab-on-a-chip devices. In order to fully explore the utility of MFCs, device should be composed of common microfluidic materials (i.e. formed from the same materials as the rest of the device) and amendable to fabrication alongside other components of microfluidic devices (i.e. not require specialized equipment/techniques for patterning). This thesis set out to improve the applicability of MFC devices by enhancing fabrication methods and describing new functional materials to better align MFCs with microfluidic device architectures. To achieve this goal, I focused my efforts on improving individual sub-components of the MFC device architecture to yield more effective devices. Throughout this thesis, emphasis was placed upon leveraging techniques amenable to low-cost bench-top processing (i.e. those that do not require expensive capital equipment) to broaden the applicability of MFC devices. My work was applied to three components of planar MFC devices (where a device consists of a single sided microchannel and a flat capping layer). First, proton exchange membranes capable of in situ patterning were developed and characterized. Second, oxygen transport through air breathing polymer layers was assessed through finite element modelling to better understand factors governing air breathing MFC devices. Finally, a new technique, multi-layer in situ laminar flow lithography, was introduced and characterized. This technique was shown to allow for patterning of multi-layer metal films to yield independent catalytic electrodes. Functional alkaline direct methanol fuel cell devices were then fabricated and characterized using the technique. The utility and applicability of each of these techniques to both MFCs and the wider field of microfluidics was assessed and possible applications discussed.

Cobalt

Download Cobalt PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9535136674
Total Pages : 168 pages
Book Rating : 4.5/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Cobalt by : Khan Maaz

Download or read book Cobalt written by Khan Maaz and published by BoD – Books on Demand. This book was released on 2017-12-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cobalt is a brittle, hard, silver-grey transition metal with high melting point, hard-wearing at elevated temperatures, good corrosion resistance and improved chemical, magnetic and mechanical properties. This book aims to provide in-depth study and analyses of various synthesis and processing techniques and characterization of cobalt that can lead to its increased applications in recent technology. This book presents deep understanding of the new techniques from basic to the advance level for scientists and engineers. The chapters cover all major aspects about cobalt and its application in material characterization with special emphasis on both theoretical and experimental aspects. This book addresses engineering professionals, students and materials scientists.

Fuel Cells: Technologies for Fuel Processing

Download Fuel Cells: Technologies for Fuel Processing PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444535640
Total Pages : 569 pages
Book Rating : 4.4/5 (445 download)

DOWNLOAD NOW!


Book Synopsis Fuel Cells: Technologies for Fuel Processing by : Dushyant Shekhawat

Download or read book Fuel Cells: Technologies for Fuel Processing written by Dushyant Shekhawat and published by Elsevier. This book was released on 2011-03-18 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fuel Cells: Technologies for Fuel Processing provides an overview of the most important aspects of fuel reforming to the generally interested reader, researcher, technologist, teacher, student, or engineer. The topics covered include all aspects of fuel reforming: fundamental chemistry, different modes of reforming, catalysts, catalyst deactivation, fuel desulfurization, reaction engineering, novel reforming concepts, thermodynamics, heat and mass transfer issues, system design, and recent research and development. While no attempt is made to describe the fuel cell itself, there is sufficient description of the fuel cell to show how it affects the fuel reformer. By focusing on the fundamentals, this book aims to be a source of information now and in the future. By avoiding time-sensitive information/analysis (e.g., economics) it serves as a single source of information for scientists and engineers in fuel processing technology. The material is presented in such a way that this book will serve as a reference for graduate level courses, fuel cell developers, and fuel cell researchers. - Chapters written by experts in each area - Extensive bibliography supporting each chapter - Detailed index - Up-to-date diagrams and full colour illustrations

Carbon: The Next Silicon?

Download Carbon: The Next Silicon? PDF Online Free

Author :
Publisher : Momentum Press
ISBN 13 : 1606508849
Total Pages : 139 pages
Book Rating : 4.6/5 (65 download)

DOWNLOAD NOW!


Book Synopsis Carbon: The Next Silicon? by : Marc J. Madou

Download or read book Carbon: The Next Silicon? written by Marc J. Madou and published by Momentum Press. This book was released on 2016-01-12 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nuclear Magnetic Resonance (NMR) and Electron Spin Resonance (ESR) spectroscopies are well-known characterization techniques that reveal the molecular details of a sample non-invasively. The authors discuss how NMR can provide useful information on the microstructure of carbon and its surface properties and explain how C-MEMS/C-NEMS technology can be explored for building improved NMR microdevices. The authors highlight the manipulation of fluids and particles by dielectrophoresis and the use of carbon electrodes for dielectrophoresis in Lab-on-a-Chip. The use of these electrodes in sample preparation through electrical polarization of a sample for identification, manipulation, and lysis of bioparticles is also discussed and they introduce a new generation of neural prosthetics based on glassy carbon micromachined electrode arrays. The tuning of the electrical, electrochemical and mechanical properties of these patternable electrodes for applications in bio-electrical signal recording and stimulation, and results from in-vivo testing of these glassy carbon microelectrode arrays is reported, demonstrating a quantifiable superior performance compared to metal electrodes.