Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Journey Through Discrete Mathematics
Download A Journey Through Discrete Mathematics full books in PDF, epub, and Kindle. Read online A Journey Through Discrete Mathematics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A Journey Through Discrete Mathematics by : Martin Loebl
Download or read book A Journey Through Discrete Mathematics written by Martin Loebl and published by Springer. This book was released on 2017-10-11 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of high-quality articles in the field of combinatorics, geometry, algebraic topology and theoretical computer science is a tribute to Jiří Matoušek, who passed away prematurely in March 2015. It is a collaborative effort by his colleagues and friends, who have paid particular attention to clarity of exposition – something Jirka would have approved of. The original research articles, surveys and expository articles, written by leading experts in their respective fields, map Jiří Matoušek’s numerous areas of mathematical interest.
Book Synopsis Journey into Discrete Mathematics by : Owen D. Byer
Download or read book Journey into Discrete Mathematics written by Owen D. Byer and published by American Mathematical Soc.. This book was released on 2018-11-13 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Journey into Discrete Mathematics is designed for use in a first course in mathematical abstraction for early-career undergraduate mathematics majors. The important ideas of discrete mathematics are included—logic, sets, proof writing, relations, counting, number theory, and graph theory—in a manner that promotes development of a mathematical mindset and prepares students for further study. While the treatment is designed to prepare the student reader for the mathematics major, the book remains attractive and appealing to students of computer science and other problem-solving disciplines. The exposition is exquisite and engaging and features detailed descriptions of the thought processes that one might follow to attack the problems of mathematics. The problems are appealing and vary widely in depth and difficulty. Careful design of the book helps the student reader learn to think like a mathematician through the exposition and the problems provided. Several of the core topics, including counting, number theory, and graph theory, are visited twice: once in an introductory manner and then again in a later chapter with more advanced concepts and with a deeper perspective. Owen D. Byer and Deirdre L. Smeltzer are both Professors of Mathematics at Eastern Mennonite University. Kenneth L. Wantz is Professor of Mathematics at Regent University. Collectively the authors have specialized expertise and research publications ranging widely over discrete mathematics and have over fifty semesters of combined experience in teaching this subject.
Book Synopsis A Brief Journey in Discrete Mathematics by : Randolph Nelson
Download or read book A Brief Journey in Discrete Mathematics written by Randolph Nelson and published by Springer Nature. This book was released on 2020-02-11 with total page 191 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to showcase the beauty of mathematics as revealed in nine topics of discrete mathematics. In each chapter, properties are explored through a series of straightforward questions that terminate with results that lie at the doorstep of a field of study. Each step along the way is elementary and requires only algebraic manipulation. This frames the wonder of mathematics and highlights the complex world that lies behind a series of simple, mathematical, deductions. Topics addressed include combinatorics, unifying properties of symmetric functions, the Golden ratio as it leads to k-bonacci numbers, non-intuitive and surprising results found in a simple coin tossing game, the playful, trick question aspect of modular systems, exploration of basic properties of prime numbers and derivations of bewildering results that arise from approximating irrational numbers as continued fraction expansions. The Appendix contains the basic tools of mathematics that are used in the text along with a numerous list of identities that are derived in the body of the book. The mathematics in the book is derived from first principles. On only one occasion does it rely on a result not derived within the text. Since the book does not require calculus or advanced techniques, it should be accessible to advanced high school students and undergraduates in math or computer science. Senior mathematicians might be unfamiliar with some of the topics addressed in its pages or find interest in the book's unified approach to discrete math.
Book Synopsis Discrete Mathematics by : Oscar Levin
Download or read book Discrete Mathematics written by Oscar Levin and published by Createspace Independent Publishing Platform. This book was released on 2016-08-16 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Book Synopsis Tale Of Discrete Mathematics, A: A Journey Through Logic, Reasoning, Structures And Graph Theory by : Joseph Khoury
Download or read book Tale Of Discrete Mathematics, A: A Journey Through Logic, Reasoning, Structures And Graph Theory written by Joseph Khoury and published by World Scientific. This book was released on 2024-03-19 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topics covered in Discrete Mathematics have become essential tools in many areas of studies in recent years. This is primarily due to the revolution in technology, communications, and cyber security. The book treats major themes in a typical introductory modern Discrete Mathematics course: Propositional and predicate logic, proof techniques, set theory (including Boolean algebra, functions and relations), introduction to number theory, combinatorics and graph theory.An accessible, precise, and comprehensive approach is adopted in the treatment of each topic. The ability of abstract thinking and the art of writing valid arguments are emphasized through detailed proof of (almost) every result. Developing the ability to think abstractly and roguishly is key in any areas of science, information technology and engineering. Every result presented in the book is followed by examples and applications to consolidate its comprehension. The hope is that the reader ends up developing both the abstract reasoning as well as acquiring practical skills.All efforts are made to write the book at a level accessible to first-year students and to present each topic in a way that facilitates self-directed learning. Each chapter starts with basic concepts of the subject at hand and progresses gradually to cover more ground on the subject. Chapters are divided into sections and subsections to facilitate readings. Each section ends with its own carefully chosen set of practice exercises to reenforce comprehension and to challenge and stimulate readers.As an introduction to Discrete Mathematics, the book is written with the smallest set of prerequisites possible. Familiarity with basic mathematical concepts (usually acquired in high school) is sufficient for most chapters. However, some mathematical maturity comes in handy to grasp some harder concepts presented in the book.
Book Synopsis Logic and Discrete Mathematics by : Willem Conradie
Download or read book Logic and Discrete Mathematics written by Willem Conradie and published by John Wiley & Sons. This book was released on 2015-05-08 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solutions manual to accompany Logic and Discrete Mathematics: A Concise Introduction This book features a unique combination of comprehensive coverage of logic with a solid exposition of the most important fields of discrete mathematics, presenting material that has been tested and refined by the authors in university courses taught over more than a decade. Written in a clear and reader-friendly style, each section ends with an extensive set of exercises, most of them provided with complete solutions which are available in this accompanying solutions manual.
Book Synopsis Discrete Mathematics by : Kenneth A. Ross
Download or read book Discrete Mathematics written by Kenneth A. Ross and published by . This book was released on 1988 with total page 654 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book In Code written by Sarah Flannery and published by Algonquin Books. This book was released on 2002-01-01 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published in England and cowritten with her father, "In Code" is "a wonderfully moving story about the thrill of the mathematical chase" ("Nature") and "a paean to intellectual adventure" ("Times Educational Supplement"). A memoir in mathematics, it is all about how a girl next door became an award-winning mathematician. photo insert.
Book Synopsis Discrete Mathematics with Proof by : Eric Gossett
Download or read book Discrete Mathematics with Proof written by Eric Gossett and published by John Wiley & Sons. This book was released on 2009-06-22 with total page 932 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Trusted Guide to Discrete Mathematics with Proof?Now in a Newly Revised Edition Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. The book begins with an introductory chapter that provides an accessible explanation of discrete mathematics. Subsequent chapters explore additional related topics including counting, finite probability theory, recursion, formal models in computer science, graph theory, trees, the concepts of functions, and relations. Additional features of the Second Edition include: An intense focus on the formal settings of proofs and their techniques, such as constructive proofs, proof by contradiction, and combinatorial proofs New sections on applications of elementary number theory, multidimensional induction, counting tulips, and the binomial distribution Important examples from the field of computer science presented as applications including the Halting problem, Shannon's mathematical model of information, regular expressions, XML, and Normal Forms in relational databases Numerous examples that are not often found in books on discrete mathematics including the deferred acceptance algorithm, the Boyer-Moore algorithm for pattern matching, Sierpinski curves, adaptive quadrature, the Josephus problem, and the five-color theorem Extensive appendices that outline supplemental material on analyzing claims and writing mathematics, along with solutions to selected chapter exercises Combinatorics receives a full chapter treatment that extends beyond the combinations and permutations material by delving into non-standard topics such as Latin squares, finite projective planes, balanced incomplete block designs, coding theory, partitions, occupancy problems, Stirling numbers, Ramsey numbers, and systems of distinct representatives. A related Web site features animations and visualizations of combinatorial proofs that assist readers with comprehension. In addition, approximately 500 examples and over 2,800 exercises are presented throughout the book to motivate ideas and illustrate the proofs and conclusions of theorems. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics.
Book Synopsis Advanced Number Theory with Applications by : Richard A. Mollin
Download or read book Advanced Number Theory with Applications written by Richard A. Mollin and published by CRC Press. This book was released on 2009-08-26 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring one of the most dynamic areas of mathematics, Advanced Number Theory with Applications covers a wide range of algebraic, analytic, combinatorial, cryptographic, and geometric aspects of number theory. Written by a recognized leader in algebra and number theory, the book includes a page reference for every citing in the bibliography and mo
Download or read book Putnam and Beyond written by Răzvan Gelca and published by Springer. This book was released on 2017-09-19 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors. The source, author, and historical background are cited whenever possible. Complete solutions to all problems are given at the end of the book. This second edition includes new sections on quad ratic polynomials, curves in the plane, quadratic fields, combinatorics of numbers, and graph theory, and added problems or theoretical expansion of sections on polynomials, matrices, abstract algebra, limits of sequences and functions, derivatives and their applications, Stokes' theorem, analytical geometry, combinatorial geometry, and counting strategies. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research. This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for independent study by undergraduate and gradu ate students, as well as teachers and researchers in the physical sciences who wish to expand their mathematical horizons.
Book Synopsis Markov's Theorem and 100 Years of the Uniqueness Conjecture by : Martin Aigner
Download or read book Markov's Theorem and 100 Years of the Uniqueness Conjecture written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2013-07-18 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book takes the reader on a mathematical journey, from a number-theoretic point of view, to the realm of Markov’s theorem and the uniqueness conjecture, gradually unfolding many beautiful connections until everything falls into place in the proof of Markov’s theorem. What makes the Markov theme so attractive is that it appears in an astounding variety of different fields, from number theory to combinatorics, from classical groups and geometry to the world of graphs and words. On the way, there are also introductory forays into some fascinating topics that do not belong to the standard curriculum, such as Farey fractions, modular and free groups, hyperbolic planes, and algebraic words. The book closes with a discussion of the current state of knowledge about the uniqueness conjecture, which remains an open challenge to this day. All the material should be accessible to upper-level undergraduates with some background in number theory, and anything beyond this level is fully explained in the text. This is not a monograph in the usual sense concentrating on a specific topic. Instead, it narrates in five parts – Numbers, Trees, Groups, Words, Finale – the story of a discovery in one field and its many manifestations in others, as a tribute to a great mathematical achievement and as an intellectual pleasure, contemplating the marvellous unity of all mathematics.
Book Synopsis Forbidden Configurations in Discrete Geometry by : David Eppstein
Download or read book Forbidden Configurations in Discrete Geometry written by David Eppstein and published by Cambridge University Press. This book was released on 2018-05-17 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unifies discrete and computational geometry by using forbidden patterns of points to characterize many of its problems.
Book Synopsis Methods for Euclidean Geometry by : Owen Byer
Download or read book Methods for Euclidean Geometry written by Owen Byer and published by American Mathematical Soc.. This book was released on 2010-12-31 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Euclidean plane geometry is one of the oldest and most beautiful topics in mathematics. Instead of carefully building geometries from axiom sets, this book uses a wealth of methods to solve problems in Euclidean geometry. Many of these methods arose where existing techniques proved inadequate. In several cases, the new ideas used in solving specific problems later developed into independent areas of mathematics. This book is primarily a geometry textbook, but studying geometry in this way will also develop students' appreciation of the subject and of mathematics as a whole. For instance, despite the fact that the analytic method has been part of mathematics for four centuries, it is rarely a tool a student considers using when faced with a geometry problem. Methods for Euclidean Geometry explores the application of a broad range of mathematical topics to the solution of Euclidean problems.
Book Synopsis Mathemagics: A Magical Journey Through Advanced Mathematics - Connecting More Than 60 Magic Tricks To High-level Math by : Ricardo V Teixeira
Download or read book Mathemagics: A Magical Journey Through Advanced Mathematics - Connecting More Than 60 Magic Tricks To High-level Math written by Ricardo V Teixeira and published by World Scientific. This book was released on 2020-05-29 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: 'This delightful book connects mathematical concepts in a dozen areas to magic tricks. Expositions of the mathematics precede description and analysis of the tricks. The expositions are too short for in-depth learning; the intent is to give sophomores a taste of the content and ideas of later mathematics courses. Each chapter features exercises on the mathematics, and students can have fun practicing the tricks.'Mathematics MagazineTeixeira and Park present over 60 different magic tricks while introducing students to high-level math areas. Readers will learn really interesting ideas that will better prepare them for future courses and help them finding areas they might want to study deeper. And as a 'side effect' students will learn amazing magic tricks, century-old secrets, and details from famous magicians and mathematicians.The material was written to quickly present key concepts in several mathematical areas in direct way. Little or no proficiency in math is assumed. In fact, students do not require any Calculus knowledge. And since chapters are almost independent from each other, this book also work as introduction to several other courses.Topics covered include mathematical proofs, probability, abstract algebra, linear algebra, mathematical computing, number theory, coding theory, geometry, topology, real analysis, numerical analysis and history of math.
Book Synopsis Concrete Mathematics by : Ronald L. Graham
Download or read book Concrete Mathematics written by Ronald L. Graham and published by Addison-Wesley Professional. This book was released on 1994-02-28 with total page 811 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the mathematics that supports advanced computer programming and the analysis of algorithms. The primary aim of its well-known authors is to provide a solid and relevant base of mathematical skills - the skills needed to solve complex problems, to evaluate horrendous sums, and to discover subtle patterns in data. It is an indispensable text and reference not only for computer scientists - the authors themselves rely heavily on it! - but for serious users of mathematics in virtually every discipline. Concrete Mathematics is a blending of CONtinuous and disCRETE mathematics. "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems." The subject matter is primarily an expansion of the Mathematical Preliminaries section in Knuth's classic Art of Computer Programming, but the style of presentation is more leisurely, and individual topics are covered more deeply. Several new topics have been added, and the most significant ideas have been traced to their historical roots. The book includes more than 500 exercises, divided into six categories. Complete answers are provided for all exercises, except research problems, making the book particularly valuable for self-study. Major topics include: Sums Recurrences Integer functions Elementary number theory Binomial coefficients Generating functions Discrete probability Asymptotic methods This second edition includes important new material about mechanical summation. In response to the widespread use of the first edition as a reference book, the bibliography and index have also been expanded, and additional nontrivial improvements can be found on almost every page. Readers will appreciate the informal style of Concrete Mathematics. Particularly enjoyable are the marginal graffiti contributed by students who have taken courses based on this material. The authors want to convey not only the importance of the techniques presented, but some of the fun in learning and using them.
Book Synopsis Discrete Dynamical Systems by : Oded Galor
Download or read book Discrete Dynamical Systems written by Oded Galor and published by Springer Science & Business Media. This book was released on 2007-05-17 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to discrete dynamical systems – a framework of analysis that is commonly used in the ?elds of biology, demography, ecology, economics, engineering, ?nance, and physics. The book characterizes the fundamental factors that govern the quantitative and qualitative trajectories of a variety of deterministic, discrete dynamical systems, providing solution methods for systems that can be solved analytically and methods of qualitative analysis for those systems that do not permit or necessitate an explicit solution. The analysis focuses initially on the characterization of the factors that govern the evolution of state variables in the elementary context of one-dimensional, ?rst-order, linear, autonomous systems. The f- damental insights about the forces that a?ect the evolution of these - ementary systems are subsequently generalized, and the determinants of the trajectories of multi-dimensional, nonlinear, higher-order, non- 1 autonomous dynamical systems are established. Chapter 1 focuses on the analysis of the evolution of state variables in one-dimensional, ?rst-order, autonomous systems. It introduces a method of solution for these systems, and it characterizes the traj- tory of a state variable, in relation to a steady-state equilibrium of the system, examining the local and global (asymptotic) stability of this steady-state equilibrium. The ?rst part of the chapter characterizes the factors that determine the existence, uniqueness and stability of a steady-state equilibrium in the elementary context of one-dimensional, ?rst-order, linear autonomous systems.