Functional Form and Heterogeneity in Models for Count Data

Download Functional Form and Heterogeneity in Models for Count Data PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 160198054X
Total Pages : 120 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Functional Form and Heterogeneity in Models for Count Data by : William Greene

Download or read book Functional Form and Heterogeneity in Models for Count Data written by William Greene and published by Now Publishers Inc. This book was released on 2007 with total page 120 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study presents several extensions of the most familiar models for count data, the Poisson and negative binomial models. We develop an encompassing model for two well-known variants of the negative binomial model (the NB1 and NB2 forms). We then analyze some alternative approaches to the standard log gamma model for introducing heterogeneity into the loglinear conditional means for these models. The lognormal model provides a versatile alternative specification that is more flexible (and more natural) than the log gamma form, and provides a platform for several "two part" extensions, including zero inflation, hurdle, and sample selection models. (We briefly present some alternative approaches to modeling heterogeneity.) We also resolve some features in Hausman, Hall and Griliches (1984, Economic models for count data with an application to the patents-R & D relationship, Econometrica 52, 909-938) widely used panel data treatments for the Poisson and negative binomial models that appear to conflict with more familiar models of fixed and random effects. Finally, we consider a bivariate Poisson model that is also based on the lognormal heterogeneity model. Two recent applications have used this model. We suggest that the correlation estimated in their model frameworks is an ambiguous measure of the correlation of the variables of interest, and may substantially overstate it. We conclude with a detailed application of the proposed methods using the data employed in one of the two aforementioned bivariate Poisson studies

Beyond Multiple Linear Regression

Download Beyond Multiple Linear Regression PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439885400
Total Pages : 436 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Beyond Multiple Linear Regression by : Paul Roback

Download or read book Beyond Multiple Linear Regression written by Paul Roback and published by CRC Press. This book was released on 2021-01-14 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beyond Multiple Linear Regression: Applied Generalized Linear Models and Multilevel Models in R is designed for undergraduate students who have successfully completed a multiple linear regression course, helping them develop an expanded modeling toolkit that includes non-normal responses and correlated structure. Even though there is no mathematical prerequisite, the authors still introduce fairly sophisticated topics such as likelihood theory, zero-inflated Poisson, and parametric bootstrapping in an intuitive and applied manner. The case studies and exercises feature real data and real research questions; thus, most of the data in the textbook comes from collaborative research conducted by the authors and their students, or from student projects. Every chapter features a variety of conceptual exercises, guided exercises, and open-ended exercises using real data. After working through this material, students will develop an expanded toolkit and a greater appreciation for the wider world of data and statistical modeling. A solutions manual for all exercises is available to qualified instructors at the book’s website at www.routledge.com, and data sets and Rmd files for all case studies and exercises are available at the authors’ GitHub repo (https://github.com/proback/BeyondMLR)

Nonlinear Models for Repeated Measurement Data

Download Nonlinear Models for Repeated Measurement Data PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1351428152
Total Pages : 360 pages
Book Rating : 4.3/5 (514 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Models for Repeated Measurement Data by : Marie Davidian

Download or read book Nonlinear Models for Repeated Measurement Data written by Marie Davidian and published by Routledge. This book was released on 2017-11-01 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear measurement data arise in a wide variety of biological and biomedical applications, such as longitudinal clinical trials, studies of drug kinetics and growth, and the analysis of assay and laboratory data. Nonlinear Models for Repeated Measurement Data provides the first unified development of methods and models for data of this type, with a detailed treatment of inference for the nonlinear mixed effects and its extensions. A particular strength of the book is the inclusion of several detailed case studies from the areas of population pharmacokinetics and pharmacodynamics, immunoassay and bioassay development and the analysis of growth curves.

Statistical Methods for Meta-Analysis

Download Statistical Methods for Meta-Analysis PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080570658
Total Pages : 392 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Statistical Methods for Meta-Analysis by : Larry V. Hedges

Download or read book Statistical Methods for Meta-Analysis written by Larry V. Hedges and published by Academic Press. This book was released on 2014-06-28 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main purpose of this book is to address the statistical issues for integrating independent studies. There exist a number of papers and books that discuss the mechanics of collecting, coding, and preparing data for a meta-analysis , and we do not deal with these. Because this book concerns methodology, the content necessarily is statistical, and at times mathematical. In order to make the material accessible to a wider audience, we have not provided proofs in the text. Where proofs are given, they are placed as commentary at the end of a chapter. These can be omitted at the discretion of the reader.Throughout the book we describe computational procedures whenever required. Many computations can be completed on a hand calculator, whereas some require the use of a standard statistical package such as SAS, SPSS, or BMD. Readers with experience using a statistical package or who conduct analyses such as multiple regression or analysis of variance should be able to carry out the analyses described with the aid of a statistical package.

Fixed Effects Regression Methods for Longitudinal Data Using SAS

Download Fixed Effects Regression Methods for Longitudinal Data Using SAS PDF Online Free

Author :
Publisher :
ISBN 13 : 9781642953237
Total Pages : 160 pages
Book Rating : 4.9/5 (532 download)

DOWNLOAD NOW!


Book Synopsis Fixed Effects Regression Methods for Longitudinal Data Using SAS by : Paul D. Allison

Download or read book Fixed Effects Regression Methods for Longitudinal Data Using SAS written by Paul D. Allison and published by . This book was released on 2019-07-12 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fixed Effects Regression Methods for Longitudinal Data Using SAS, written by Paul Allison, is an invaluable resource for all researchers interested in adding fixed effects regression methods to their tool kit of statistical techniques. First introduced by economists, fixed effects methods are gaining widespread use throughout the social sciences. Designed to eliminate major biases from regression models with multiple observations (usually longitudinal) for each subject (usually a person), fixed effects methods essentially offer control for all stable characteristics of the subjects, even characteristics that are difficult or impossible to measure. This straightforward and thorough text shows you how to estimate fixed effects models with several SAS procedures that are appropriate for different kinds of outcome variables. The theoretical background of each model is explained, and the models are then illustrated with detailed examples using real data. The book contains thorough discussions of the following uses of SAS procedures: PROC GLM for estimating fixed effects linear models for quantitative outcomes, PROC LOGISTIC for estimating fixed effects logistic regression models, PROC PHREG for estimating fixed effects Cox regression models for repeated event data, PROC GENMOD for estimating fixed effects Poisson regression models for count data, and PROC CALIS for estimating fixed effects structural equation models. To gain the most benefit from this book, readers should be familiar with multiple linear regression, have practical experience using multiple regression on real data, and be comfortable interpreting the output from a regression analysis. An understanding of logistic regression and Poisson regression is a plus. Some experience with SAS is helpful, but not required.

Flexible Imputation of Missing Data, Second Edition

Download Flexible Imputation of Missing Data, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429960352
Total Pages : 444 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Modern Statistical Methods for Spatial and Multivariate Data

Download Modern Statistical Methods for Spatial and Multivariate Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030114317
Total Pages : 184 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Modern Statistical Methods for Spatial and Multivariate Data by : Norou Diawara

Download or read book Modern Statistical Methods for Spatial and Multivariate Data written by Norou Diawara and published by Springer. This book was released on 2019-06-29 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume features invited papers on current models and statistical methods for spatial and multivariate data. With a focus on recent advances in statistics, topics include spatio-temporal aspects, classification techniques, the multivariate outcomes with zero and doubly-inflated data, discrete choice modelling, copula distributions, and feasible algorithmic solutions. Special emphasis is placed on applications such as the use of spatial and spatio-temporal models for rainfall in South Carolina and the multivariate sparse areal mixed model for the Census dataset for the state of Iowa. Articles use simulated and aggregated data examples to show the flexibility and wide applications of proposed techniques. Carefully peer-reviewed and pedagogically presented for a broad readership, this volume is suitable for graduate and postdoctoral students interested in interdisciplinary research. Researchers in applied statistics and sciences will find this book an important resource on the latest developments in the field. In keeping with the STEAM-H series, the editors hope to inspire interdisciplinary understanding and collaboration.

Modeling Count Data

Download Modeling Count Data PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107028337
Total Pages : 301 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Modeling Count Data by : Joseph M. Hilbe

Download or read book Modeling Count Data written by Joseph M. Hilbe and published by Cambridge University Press. This book was released on 2014-07-21 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides guidelines and fully worked examples of how to select, construct, interpret and evaluate the full range of count models.

Discrete Multivariate Distributions

Download Discrete Multivariate Distributions PDF Online Free

Author :
Publisher : Wiley-Interscience
ISBN 13 : 9780471128441
Total Pages : 328 pages
Book Rating : 4.1/5 (284 download)

DOWNLOAD NOW!


Book Synopsis Discrete Multivariate Distributions by : Norman L. Johnson

Download or read book Discrete Multivariate Distributions written by Norman L. Johnson and published by Wiley-Interscience. This book was released on 1997-02-07 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Timely, comprehensive, practical--an important working resource for all who use this critical statistical method Discrete Multivariate Distributions is the only comprehensive, single-source reference for this increasingly important statistical subdiscipline. It covers all significant advances that have occurred in the field over the past quarter century in the theory, methodology, computational procedures, and applications of discrete multivariate distributions in a wide range of disciplines. Distributions covered include multinomial, binomial, negative binomial, Poisson, power series, hypergeometric, Polya-Eggenberger, Ewens, orders, and some families of distributions. Each distribution is presented in its own chapter, along with necessary details and descriptions of real-world applications gleaned from the current literature on discrete multivariate distributions. Discrete Multivariate Distributions is the fourth volume of the ongoing revision of Johnson and Kotz's acclaimed Distributions in Statistics--universally acknowledged to be the definitive work on statistical distributions. Originally planned as a revision of Chapter 11 of that classic, this project soon blossomed into a substantial volume as a result of the unprecedented growth that has occurred in the literature on discrete multivariate distributions and their applications over the past quarter century. The only comprehensive, single-volume work on the subject, this valuable reference affords statisticians direct access to all of the latest developments concerning discrete multivariate distributions. Concentrating primarily on areas of interest to theoretical as well as applied statisticians, the authors provide complete coverage of several important discrete multivariate distributions. These include multinomial, binomial, negative binomial, Poisson, power series, hypergeometric, Polya-Eggenberger, Ewens, orders, and some families of distributions. Discrete Multivariate Distributions begins with a general overview of the multivariate method in which the authors lay the basic theoretical groundwork for the discussions that follow. For clarity and consistency, subsequent chapters follow a similar format, beginning with a concise historical account followed by a discussion of properties and characteristics. Coverage then advances to in-depth explorations of inferential issues and applications, liberally supplemented with helpful details and a collection of real-world applications obtained from the authors' extensive searches of current literature worldwide. Discrete Multivariate Distributions is an essential working resource for researchers, professionals, practitioners, and graduate students in statistics, mathematics, computer science, engineering, medicine, and the biological sciences.

Regression Analysis of Count Data

Download Regression Analysis of Count Data PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107014166
Total Pages : 597 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Regression Analysis of Count Data by : Adrian Colin Cameron

Download or read book Regression Analysis of Count Data written by Adrian Colin Cameron and published by Cambridge University Press. This book was released on 2013-05-27 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the most comprehensive and up-to-date account of regression methods to explain the frequency of events.

Logistic Regression Using SAS

Download Logistic Regression Using SAS PDF Online Free

Author :
Publisher : SAS Institute
ISBN 13 : 1629590185
Total Pages : 348 pages
Book Rating : 4.6/5 (295 download)

DOWNLOAD NOW!


Book Synopsis Logistic Regression Using SAS by : Paul D. Allison

Download or read book Logistic Regression Using SAS written by Paul D. Allison and published by SAS Institute. This book was released on 2012-03-30 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: Informal and nontechnical, this book both explains the theory behind logistic regression, and looks at all the practical details involved in its implementation using SAS. Includes several real-world examples in full detail.

Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan

Download Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128016787
Total Pages : 329 pages
Book Rating : 4.1/5 (28 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan by : Franzi Korner-Nievergelt

Download or read book Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and Stan written by Franzi Korner-Nievergelt and published by Academic Press. This book was released on 2015-04-04 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN examines the Bayesian and frequentist methods of conducting data analyses. The book provides the theoretical background in an easy-to-understand approach, encouraging readers to examine the processes that generated their data. Including discussions of model selection, model checking, and multi-model inference, the book also uses effect plots that allow a natural interpretation of data. Bayesian Data Analysis in Ecology Using Linear Models with R, BUGS, and STAN introduces Bayesian software, using R for the simple modes, and flexible Bayesian software (BUGS and Stan) for the more complicated ones. Guiding the ready from easy toward more complex (real) data analyses ina step-by-step manner, the book presents problems and solutions—including all R codes—that are most often applicable to other data and questions, making it an invaluable resource for analyzing a variety of data types. - Introduces Bayesian data analysis, allowing users to obtain uncertainty measurements easily for any derived parameter of interest - Written in a step-by-step approach that allows for eased understanding by non-statisticians - Includes a companion website containing R-code to help users conduct Bayesian data analyses on their own data - All example data as well as additional functions are provided in the R-package blmeco

Mixed Effects Models and Extensions in Ecology with R

Download Mixed Effects Models and Extensions in Ecology with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387874585
Total Pages : 579 pages
Book Rating : 4.3/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Mixed Effects Models and Extensions in Ecology with R by : Alain Zuur

Download or read book Mixed Effects Models and Extensions in Ecology with R written by Alain Zuur and published by Springer Science & Business Media. This book was released on 2009-03-05 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses advanced statistical methods that can be used to analyse ecological data. Most environmental collected data are measured repeatedly over time, or space and this requires the use of GLMM or GAMM methods. The book starts by revising regression, additive modelling, GAM and GLM, and then discusses dealing with spatial or temporal dependencies and nested data.

Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017)

Download Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811372799
Total Pages : 566 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) by : Liew-Kee Kor

Download or read book Proceedings of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) written by Liew-Kee Kor and published by Springer. This book was released on 2019-03-27 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a product of the Third International Conference on Computing, Mathematics and Statistics (iCMS2017) to be held in Langkawi in November 2017. It is divided into four sections according to the thrust areas: Computer Science, Mathematics, Statistics, and Multidisciplinary Applications. All sections sought to confront current issues that society faces today. The book brings collectively quantitative, as well as qualitative, research methods that are also suitable for future research undertakings. Researchers in Computer Science, Mathematics and Statistics can use this book as a sourcebook to enrich their research works.

Mixed Effects Models for Complex Data

Download Mixed Effects Models for Complex Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420074086
Total Pages : 431 pages
Book Rating : 4.0/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Regression & Linear Modeling

Download Regression & Linear Modeling PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 1506302750
Total Pages : 489 pages
Book Rating : 4.5/5 (63 download)

DOWNLOAD NOW!


Book Synopsis Regression & Linear Modeling by : Jason W. Osborne

Download or read book Regression & Linear Modeling written by Jason W. Osborne and published by SAGE Publications. This book was released on 2016-03-24 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a conversational tone, Regression & Linear Modeling provides conceptual, user-friendly coverage of the generalized linear model (GLM). Readers will become familiar with applications of ordinary least squares (OLS) regression, binary and multinomial logistic regression, ordinal regression, Poisson regression, and loglinear models. Author Jason W. Osborne returns to certain themes throughout the text, such as testing assumptions, examining data quality, and, where appropriate, nonlinear and non-additive effects modeled within different types of linear models.

Econometric Analysis of Count Data

Download Econometric Analysis of Count Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540404040
Total Pages : 324 pages
Book Rating : 4.4/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Econometric Analysis of Count Data by : Rainer Winkelmann

Download or read book Econometric Analysis of Count Data written by Rainer Winkelmann and published by Springer Science & Business Media. This book was released on 2003 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many other sections have been entirely rewritten and extended."--BOOK JACKET.