Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
A Field Guide To Genetic Programming
Download A Field Guide To Genetic Programming full books in PDF, epub, and Kindle. Read online A Field Guide To Genetic Programming ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis A Field Guide to Genetic Programming by :
Download or read book A Field Guide to Genetic Programming written by and published by Lulu.com. This book was released on 2008 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic programming (GP) is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until high-fitness solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. This unique overview of this exciting technique is written by three of the most active scientists in GP. See www.gp-field-guide.org.uk for more information on the book.
Book Synopsis Genetic Programming III by : John R. Koza
Download or read book Genetic Programming III written by John R. Koza and published by Morgan Kaufmann. This book was released on 1999 with total page 1516 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic programming (GP) is a method for getting a computer to solve a problem by telling it what needs to be done instead of how to do it. Koza, Bennett, Andre, and Keane present genetically evolved solutions to dozens of problems of design, control, classification, system identification, and computational molecular biology. Among the solutions are 14 results competitive with human-produced results, including 10 rediscoveries of previously patented inventions.
Book Synopsis Genetic Programming by : Wolfgang Banzhaf
Download or read book Genetic Programming written by Wolfgang Banzhaf and published by Springer Science & Business. This book was released on 1998 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: To order this title for shipment to Austria, Germany, or Switzerland, please contact dpunkt verlag directly. "[The authors] have performed a remarkable double service with this excellent book on genetic programming. First, they give an up-to-date view of the rapidly growing field of automatic creation of computer programs by means of evolution and, second, they bring together their own innovative and formidable work on evolution of assembly language machine code and linear genomes." --John R. Koza Since the early 1990s, genetic programming (GP)-a discipline whose goal is to enable the automatic generation of computer programs-has emerged as one of the most promising paradigms for fast, productive software development. GP combines biological metaphors gleaned from Darwin's theory of evolution with computer-science approaches drawn from the field of machine learning to create programs that are capable of adapting or recreating themselves for open-ended tasks. This unique introduction to GP provides a detailed overview of the subject and its antecedents, with extensive references to the published and online literature. In addition to explaining the fundamental theory and important algorithms, the text includes practical discussions covering a wealth of potential applications and real-world implementation techniques. Software professionals needing to understand and apply GP concepts will find this book an invaluable practical and theoretical guide.
Book Synopsis An Introduction to Genetic Algorithms by : Melanie Mitchell
Download or read book An Introduction to Genetic Algorithms written by Melanie Mitchell and published by MIT Press. This book was released on 1998-03-02 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Book Synopsis Linear Genetic Programming by : Markus F. Brameier
Download or read book Linear Genetic Programming written by Markus F. Brameier and published by Springer Science & Business Media. This book was released on 2007-02-25 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Genetic Programming presents a variant of Genetic Programming that evolves imperative computer programs as linear sequences of instructions, in contrast to the more traditional functional expressions or syntax trees. Typical GP phenomena, such as non-effective code, neutral variations, and code growth are investigated from the perspective of linear GP. This book serves as a reference for researchers; it includes sufficient introductory material for students and newcomers to the field.
Book Synopsis Genetic Programming Theory and Practice XVII by : Wolfgang Banzhaf
Download or read book Genetic Programming Theory and Practice XVII written by Wolfgang Banzhaf and published by Springer Nature. This book was released on 2020-05-07 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. In this year’s edition, the topics covered include many of the most important issues and research questions in the field, such as: opportune application domains for GP-based methods, game playing and co-evolutionary search, symbolic regression and efficient learning strategies, encodings and representations for GP, schema theorems, and new selection mechanisms.The volume includes several chapters on best practices and lessons learned from hands-on experience. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
Book Synopsis Genetic Algorithms + Data Structures = Evolution Programs by : Zbigniew Michalewicz
Download or read book Genetic Algorithms + Data Structures = Evolution Programs written by Zbigniew Michalewicz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic algorithms are founded upon the principle of evolution, i.e., survival of the fittest. Hence evolution programming techniques, based on genetic algorithms, are applicable to many hard optimization problems, such as optimization of functions with linear and nonlinear constraints, the traveling salesman problem, and problems of scheduling, partitioning, and control. The importance of these techniques is still growing, since evolution programs are parallel in nature, and parallelism is one of the most promising directions in computer science. The book is self-contained and the only prerequisite is basic undergraduate mathematics. This third edition has been substantially revised and extended by three new chapters and by additional appendices containing working material to cover recent developments and a change in the perception of evolutionary computation.
Book Synopsis Applied Genetic Programming and Machine Learning by : Hitoshi Iba
Download or read book Applied Genetic Programming and Machine Learning written by Hitoshi Iba and published by CRC Press. This book was released on 2009-08-26 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: What do financial data prediction, day-trading rule development, and bio-marker selection have in common? They are just a few of the tasks that could potentially be resolved with genetic programming and machine learning techniques. Written by leaders in this field, Applied Genetic Programming and Machine Learning delineates the extension of Genetic
Book Synopsis Genetic and Evolutionary Computation for Image Processing and Analysis by : Stefano Cagnoni
Download or read book Genetic and Evolutionary Computation for Image Processing and Analysis written by Stefano Cagnoni and published by Hindawi Publishing Corporation. This book was released on 2008 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hands-On Genetic Algorithms with Python by : Eyal Wirsansky
Download or read book Hands-On Genetic Algorithms with Python written by Eyal Wirsansky and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the ever-growing world of genetic algorithms to solve search, optimization, and AI-related tasks, and improve machine learning models using Python libraries such as DEAP, scikit-learn, and NumPy Key Features Explore the ins and outs of genetic algorithms with this fast-paced guide Implement tasks such as feature selection, search optimization, and cluster analysis using Python Solve combinatorial problems, optimize functions, and enhance the performance of artificial intelligence applications Book DescriptionGenetic algorithms are a family of search, optimization, and learning algorithms inspired by the principles of natural evolution. By imitating the evolutionary process, genetic algorithms can overcome hurdles encountered in traditional search algorithms and provide high-quality solutions for a variety of problems. This book will help you get to grips with a powerful yet simple approach to applying genetic algorithms to a wide range of tasks using Python, covering the latest developments in artificial intelligence. After introducing you to genetic algorithms and their principles of operation, you'll understand how they differ from traditional algorithms and what types of problems they can solve. You'll then discover how they can be applied to search and optimization problems, such as planning, scheduling, gaming, and analytics. As you advance, you'll also learn how to use genetic algorithms to improve your machine learning and deep learning models, solve reinforcement learning tasks, and perform image reconstruction. Finally, you'll cover several related technologies that can open up new possibilities for future applications. By the end of this book, you'll have hands-on experience of applying genetic algorithms in artificial intelligence as well as in numerous other domains.What you will learn Understand how to use state-of-the-art Python tools to create genetic algorithm-based applications Use genetic algorithms to optimize functions and solve planning and scheduling problems Enhance the performance of machine learning models and optimize deep learning network architecture Apply genetic algorithms to reinforcement learning tasks using OpenAI Gym Explore how images can be reconstructed using a set of semi-transparent shapes Discover other bio-inspired techniques, such as genetic programming and particle swarm optimization Who this book is for This book is for software developers, data scientists, and AI enthusiasts who want to use genetic algorithms to carry out intelligent tasks in their applications. Working knowledge of Python and basic knowledge of mathematics and computer science will help you get the most out of this book.
Book Synopsis Practical Genetic Algorithms by : Randy L. Haupt
Download or read book Practical Genetic Algorithms written by Randy L. Haupt and published by John Wiley & Sons. This book was released on 2004-07-30 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: * This book deals with the fundamentals of genetic algorithms and their applications in a variety of different areas of engineering and science * Most significant update to the second edition is the MATLAB codes that accompany the text * Provides a thorough discussion of hybrid genetic algorithms * Features more examples than first edition
Book Synopsis Evolutionary Computation by : Kenneth A. De Jong
Download or read book Evolutionary Computation written by Kenneth A. De Jong and published by MIT Press. This book was released on 2006-02-03 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: A clear and comprehensive introduction to the field of evolutionary computation that takes an integrated approach. Evolutionary computation, the use of evolutionary systems as computational processes for solving complex problems, is a tool used by computer scientists and engineers who want to harness the power of evolution to build useful new artifacts, by biologists interested in developing and testing better models of natural evolutionary systems, and by artificial life scientists for designing and implementing new artificial evolutionary worlds. In this clear and comprehensive introduction to the field, Kenneth De Jong presents an integrated view of the state of the art in evolutionary computation. Although other books have described such particular areas of the field as genetic algorithms, genetic programming, evolution strategies, and evolutionary programming, Evolutionary Computation is noteworthy for considering these systems as specific instances of a more general class of evolutionary algorithms. This useful overview of a fragmented field is suitable for classroom use or as a reference for computer scientists and engineers.
Book Synopsis Genetic Algorithms in Java Basics by : Lee Jacobson
Download or read book Genetic Algorithms in Java Basics written by Lee Jacobson and published by Apress. This book was released on 2015-11-28 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic Algorithms in Java Basics is a brief introduction to solving problems using genetic algorithms, with working projects and solutions written in the Java programming language. This brief book will guide you step-by-step through various implementations of genetic algorithms and some of their common applications, with the aim to give you a practical understanding allowing you to solve your own unique, individual problems. After reading this book you will be comfortable with the language specific issues and concepts involved with genetic algorithms and you'll have everything you need to start building your own. Genetic algorithms are frequently used to solve highly complex real world problems and with this book you too can harness their problem solving capabilities. Understanding how to utilize and implement genetic algorithms is an essential tool in any respected software developers toolkit. So step into this intriguing topic and learn how you too can improve your software with genetic algorithms, and see real Java code at work which you can develop further for your own projects and research. Guides you through the theory behind genetic algorithms Explains how genetic algorithms can be used for software developers trying to solve a range of problems Provides a step-by-step guide to implementing genetic algorithms in Java
Book Synopsis Genetic Algorithm Essentials by : Oliver Kramer
Download or read book Genetic Algorithm Essentials written by Oliver Kramer and published by Springer. This book was released on 2017-01-07 with total page 94 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.
Book Synopsis Parallel Genetic Algorithms by : Gabriel Luque
Download or read book Parallel Genetic Algorithms written by Gabriel Luque and published by Springer Science & Business Media. This book was released on 2011-06-15 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of several years of research trying to better characterize parallel genetic algorithms (pGAs) as a powerful tool for optimization, search, and learning. Readers can learn how to solve complex tasks by reducing their high computational times. Dealing with two scientific fields (parallelism and GAs) is always difficult, and the book seeks at gracefully introducing from basic concepts to advanced topics. The presentation is structured in three parts. The first one is targeted to the algorithms themselves, discussing their components, the physical parallelism, and best practices in using and evaluating them. A second part deals with the theory for pGAs, with an eye on theory-to-practice issues. A final third part offers a very wide study of pGAs as practical problem solvers, addressing domains such as natural language processing, circuits design, scheduling, and genomics. This volume will be helpful both for researchers and practitioners. The first part shows pGAs to either beginners and mature researchers looking for a unified view of the two fields: GAs and parallelism. The second part partially solves (and also opens) new investigation lines in theory of pGAs. The third part can be accessed independently for readers interested in applications. The result is an excellent source of information on the state of the art and future developments in parallel GAs.
Book Synopsis Evolutionary Computation for Modeling and Optimization by : Daniel Ashlock
Download or read book Evolutionary Computation for Modeling and Optimization written by Daniel Ashlock and published by Springer Science & Business Media. This book was released on 2006-04-04 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concentrates on developing intuition about evolutionary computation and problem solving skills and tool sets. Lots of applications and test problems, including a biotechnology chapter.
Book Synopsis Genetic Programming IV by : John R. Koza
Download or read book Genetic Programming IV written by John R. Koza and published by Springer Science & Business Media. This book was released on 2005-03-21 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic Programming IV: Routine Human-Competitive Machine Intelligence presents the application of GP to a wide variety of problems involving automated synthesis of controllers, circuits, antennas, genetic networks, and metabolic pathways. The book describes fifteen instances where GP has created an entity that either infringes or duplicates the functionality of a previously patented 20th-century invention, six instances where it has done the same with respect to post-2000 patented inventions, two instances where GP has created a patentable new invention, and thirteen other human-competitive results. The book additionally establishes: GP now delivers routine human-competitive machine intelligence GP is an automated invention machine GP can create general solutions to problems in the form of parameterized topologies GP has delivered qualitatively more substantial results in synchrony with the relentless iteration of Moore's Law