An Introduction to Variational Autoencoders

Download An Introduction to Variational Autoencoders PDF Online Free

Author :
Publisher :
ISBN 13 : 9781680836226
Total Pages : 102 pages
Book Rating : 4.8/5 (362 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Variational Autoencoders by : Diederik P. Kingma

Download or read book An Introduction to Variational Autoencoders written by Diederik P. Kingma and published by . This book was released on 2019-11-12 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Variational Autoencoders provides a quick summary for the of a topic that has become an important tool in modern-day deep learning techniques.

Bayesian Networks

Download Bayesian Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000410382
Total Pages : 275 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Networks by : Marco Scutari

Download or read book Bayesian Networks written by Marco Scutari and published by CRC Press. This book was released on 2021-07-28 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explains the material step-by-step starting from meaningful examples Steps detailed with R code in the spirit of reproducible research Real world data analyses from a Science paper reproduced and explained in detail Examples span a variety of fields across social and life sciences Overview of available software in and outside R

Bayesian Reasoning and Machine Learning

Download Bayesian Reasoning and Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521518148
Total Pages : 739 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Reasoning and Machine Learning by : David Barber

Download or read book Bayesian Reasoning and Machine Learning written by David Barber and published by Cambridge University Press. This book was released on 2012-02-02 with total page 739 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical introduction perfect for final-year undergraduate and graduate students without a solid background in linear algebra and calculus.

Multidimensional Item Response Theory

Download Multidimensional Item Response Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387899766
Total Pages : 355 pages
Book Rating : 4.3/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Multidimensional Item Response Theory by : M.D. Reckase

Download or read book Multidimensional Item Response Theory written by M.D. Reckase and published by Springer Science & Business Media. This book was released on 2009-07-07 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: First thorough treatment of multidimensional item response theory Description of methods is supported by numerous practical examples Describes procedures for multidimensional computerized adaptive testing

Unobserved Variables

Download Unobserved Variables PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642399126
Total Pages : 87 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Unobserved Variables by : David J. Bartholomew

Download or read book Unobserved Variables written by David J. Bartholomew and published by Springer Science & Business Media. This book was released on 2013-09-07 with total page 87 pages. Available in PDF, EPUB and Kindle. Book excerpt: ​The classical statistical problem typically involves a probability distribution which depends on a number of unknown parameters. The form of the distribution may be known, partially or completely, and inferences have to be made on the basis of a sample of observations drawn from the distribution; often, but not necessarily, a random sample. This brief deals with problems where some of the sample members are either unobserved or hypothetical, the latter category being introduced as a means of better explaining the data. Sometimes we are interested in these kinds of variable themselves and sometimes in the parameters of the distribution. Many problems that can be cast into this form are treated. These include: missing data, mixtures, latent variables, time series and social measurement problems. Although all can be accommodated within a Bayesian framework, most are best treated from first principles.

Handbook of Cluster Analysis

Download Handbook of Cluster Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466551895
Total Pages : 753 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Cluster Analysis by : Christian Hennig

Download or read book Handbook of Cluster Analysis written by Christian Hennig and published by CRC Press. This book was released on 2015-12-16 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Cluster Analysis provides a comprehensive and unified account of the main research developments in cluster analysis. Written by active, distinguished researchers in this area, the book helps readers make informed choices of the most suitable clustering approach for their problem and make better use of existing cluster analysis tools.The

Causal Inference in Statistics

Download Causal Inference in Statistics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119186862
Total Pages : 162 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Causal Inference in Statistics by : Judea Pearl

Download or read book Causal Inference in Statistics written by Judea Pearl and published by John Wiley & Sons. This book was released on 2016-01-25 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt: CAUSAL INFERENCE IN STATISTICS A Primer Causality is central to the understanding and use of data. Without an understanding of cause–effect relationships, we cannot use data to answer questions as basic as "Does this treatment harm or help patients?" But though hundreds of introductory texts are available on statistical methods of data analysis, until now, no beginner-level book has been written about the exploding arsenal of methods that can tease causal information from data. Causal Inference in Statistics fills that gap. Using simple examples and plain language, the book lays out how to define causal parameters; the assumptions necessary to estimate causal parameters in a variety of situations; how to express those assumptions mathematically; whether those assumptions have testable implications; how to predict the effects of interventions; and how to reason counterfactually. These are the foundational tools that any student of statistics needs to acquire in order to use statistical methods to answer causal questions of interest. This book is accessible to anyone with an interest in interpreting data, from undergraduates, professors, researchers, or to the interested layperson. Examples are drawn from a wide variety of fields, including medicine, public policy, and law; a brief introduction to probability and statistics is provided for the uninitiated; and each chapter comes with study questions to reinforce the readers understanding.

Model Selection and Model Averaging

Download Model Selection and Model Averaging PDF Online Free

Author :
Publisher :
ISBN 13 : 9780521852258
Total Pages : 312 pages
Book Rating : 4.8/5 (522 download)

DOWNLOAD NOW!


Book Synopsis Model Selection and Model Averaging by : Gerda Claeskens

Download or read book Model Selection and Model Averaging written by Gerda Claeskens and published by . This book was released on 2008-07-28 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: First book to synthesize the research and practice from the active field of model selection.

Bayesian Data Analysis, Third Edition

Download Bayesian Data Analysis, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439840954
Total Pages : 677 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Data Analysis, Third Edition by : Andrew Gelman

Download or read book Bayesian Data Analysis, Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Stochastic Epidemic Models with Inference

Download Stochastic Epidemic Models with Inference PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030309002
Total Pages : 477 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Stochastic Epidemic Models with Inference by : Tom Britton

Download or read book Stochastic Epidemic Models with Inference written by Tom Britton and published by Springer Nature. This book was released on 2019-11-30 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focussing on stochastic models for the spread of infectious diseases in a human population, this book is the outcome of a two-week ICPAM/CIMPA school on "Stochastic models of epidemics" which took place in Ziguinchor, Senegal, December 5–16, 2015. The text is divided into four parts, each based on one of the courses given at the school: homogeneous models (Tom Britton and Etienne Pardoux), two-level mixing models (David Sirl and Frank Ball), epidemics on graphs (Viet Chi Tran), and statistics for epidemic models (Catherine Larédo). The CIMPA school was aimed at PhD students and Post Docs in the mathematical sciences. Parts (or all) of this book can be used as the basis for traditional or individual reading courses on the topic. For this reason, examples and exercises (some with solutions) are provided throughout.

Statistical Analysis of Network Data

Download Statistical Analysis of Network Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387881468
Total Pages : 397 pages
Book Rating : 4.3/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Network Data by : Eric D. Kolaczyk

Download or read book Statistical Analysis of Network Data written by Eric D. Kolaczyk and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.

Bayesian Nonparametrics

Download Bayesian Nonparametrics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139484605
Total Pages : 309 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Nonparametrics by : Nils Lid Hjort

Download or read book Bayesian Nonparametrics written by Nils Lid Hjort and published by Cambridge University Press. This book was released on 2010-04-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

Mixed Effects Models for Complex Data

Download Mixed Effects Models for Complex Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781420074086
Total Pages : 431 pages
Book Rating : 4.0/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu

Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.

Learning in Graphical Models

Download Learning in Graphical Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401150141
Total Pages : 658 pages
Book Rating : 4.4/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Learning in Graphical Models by : M.I. Jordan

Download or read book Learning in Graphical Models written by M.I. Jordan and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past decade, a number of different research communities within the computational sciences have studied learning in networks, starting from a number of different points of view. There has been substantial progress in these different communities and surprising convergence has developed between the formalisms. The awareness of this convergence and the growing interest of researchers in understanding the essential unity of the subject underlies the current volume. Two research communities which have used graphical or network formalisms to particular advantage are the belief network community and the neural network community. Belief networks arose within computer science and statistics and were developed with an emphasis on prior knowledge and exact probabilistic calculations. Neural networks arose within electrical engineering, physics and neuroscience and have emphasised pattern recognition and systems modelling problems. This volume draws together researchers from these two communities and presents both kinds of networks as instances of a general unified graphical formalism. The book focuses on probabilistic methods for learning and inference in graphical models, algorithm analysis and design, theory and applications. Exact methods, sampling methods and variational methods are discussed in detail. Audience: A wide cross-section of computationally oriented researchers, including computer scientists, statisticians, electrical engineers, physicists and neuroscientists.

Elements of Causal Inference

Download Elements of Causal Inference PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262037319
Total Pages : 289 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Elements of Causal Inference by : Jonas Peters

Download or read book Elements of Causal Inference written by Jonas Peters and published by MIT Press. This book was released on 2017-11-29 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data. After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem. The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.

Sociological Abstracts

Download Sociological Abstracts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 1064 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Sociological Abstracts by : Leo P. Chall

Download or read book Sociological Abstracts written by Leo P. Chall and published by . This book was released on 1987 with total page 1064 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Dynamic Linear Models with R

Download Dynamic Linear Models with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387772383
Total Pages : 258 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Linear Models with R by : Giovanni Petris

Download or read book Dynamic Linear Models with R written by Giovanni Petris and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.