Dynamic Linear Models with R

Download Dynamic Linear Models with R PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387772383
Total Pages : 258 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Linear Models with R by : Giovanni Petris

Download or read book Dynamic Linear Models with R written by Giovanni Petris and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

State Estimation Strategies in Lithium-ion Battery Management Systems

Download State Estimation Strategies in Lithium-ion Battery Management Systems PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0443161615
Total Pages : 377 pages
Book Rating : 4.4/5 (431 download)

DOWNLOAD NOW!


Book Synopsis State Estimation Strategies in Lithium-ion Battery Management Systems by : Kailong Liu

Download or read book State Estimation Strategies in Lithium-ion Battery Management Systems written by Kailong Liu and published by Elsevier. This book was released on 2023-07-14 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: State Estimation Strategies in Lithium-ion Battery Management Systems presents key technologies and methodologies in modeling and monitoring charge, energy, power and health of lithium-ion batteries. Sections introduce core state parameters of the lithium-ion battery, reviewing existing research and the significance of the prediction of core state parameters of the lithium-ion battery and analyzing the advantages and disadvantages of prediction methods of core state parameters. Characteristic analysis and aging characteristics are then discussed. Subsequent chapters elaborate, in detail, on modeling and parameter identification methods and advanced estimation techniques in different application scenarios. Offering a systematic approach supported by examples, process diagrams, flowcharts, algorithms, and other visual elements, this book is of interest to researchers, advanced students and scientists in energy storage, control, automation, electrical engineering, power systems, materials science and chemical engineering, as well as to engineers, R&D professionals, and other industry personnel. - Introduces lithium-ion batteries, characteristics and core state parameters - Examines battery equivalent modeling and provides advanced methods for battery state estimation - Analyzes current technology and future opportunities

Kalman Filtering and Neural Networks

Download Kalman Filtering and Neural Networks PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 047146421X
Total Pages : 302 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Kalman Filtering and Neural Networks by : Simon Haykin

Download or read book Kalman Filtering and Neural Networks written by Simon Haykin and published by John Wiley & Sons. This book was released on 2004-03-24 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: State-of-the-art coverage of Kalman filter methods for the design of neural networks This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear. The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover: An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF) Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes The dual estimation problem Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm The unscented Kalman filter Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems.

Probabilistic Robotics

Download Probabilistic Robotics PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262201623
Total Pages : 668 pages
Book Rating : 4.2/5 (622 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Robotics by : Sebastian Thrun

Download or read book Probabilistic Robotics written by Sebastian Thrun and published by MIT Press. This book was released on 2005-08-19 with total page 668 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the techniques and algorithms of the newest field in robotics. Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.

Factorization of Boundary Value Problems Using the Invariant Embedding Method

Download Factorization of Boundary Value Problems Using the Invariant Embedding Method PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0081010907
Total Pages : 258 pages
Book Rating : 4.0/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Factorization of Boundary Value Problems Using the Invariant Embedding Method by : Jacques Henry

Download or read book Factorization of Boundary Value Problems Using the Invariant Embedding Method written by Jacques Henry and published by Elsevier. This book was released on 2016-11-09 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Factorization Method for Boundary Value Problems by Invariant Embedding presents a new theory for linear elliptic boundary value problems. The authors provide a transformation of the problem in two initial value problems that are uncoupled, enabling you to solve these successively. This method appears similar to the Gauss block factorization of the matrix, obtained in finite dimension after discretization of the problem. This proposed method is comparable to the computation of optimal feedbacks for linear quadratic control problems. - Develops the invariant embedding technique for boundary value problems - Makes a link between control theory, boundary value problems and the Gauss factorization - Presents a new theory for successively solving linear elliptic boundary value problems - Includes a transformation in two initial value problems that are uncoupled

Optimal Filtering

Download Optimal Filtering PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486136892
Total Pages : 370 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Optimal Filtering by : Brian D. O. Anderson

Download or read book Optimal Filtering written by Brian D. O. Anderson and published by Courier Corporation. This book was released on 2012-05-23 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text extends studies of signal processing, particularly regarding communication systems and digital filtering theory. Topics include filtering, linear systems, and estimation; discrete-time Kalman filter; time-invariant filters; more. 1979 edition.

Beyond the Kalman Filter: Particle Filters for Tracking Applications

Download Beyond the Kalman Filter: Particle Filters for Tracking Applications PDF Online Free

Author :
Publisher : Artech House
ISBN 13 : 9781580538510
Total Pages : 328 pages
Book Rating : 4.5/5 (385 download)

DOWNLOAD NOW!


Book Synopsis Beyond the Kalman Filter: Particle Filters for Tracking Applications by : Branko Ristic

Download or read book Beyond the Kalman Filter: Particle Filters for Tracking Applications written by Branko Ristic and published by Artech House. This book was released on 2003-12-01 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: For most tracking applications the Kalman filter is reliable and efficient, but it is limited to a relatively restricted class of linear Gaussian problems. To solve problems beyond this restricted class, particle filters are proving to be dependable methods for stochastic dynamic estimation. Packed with 867 equations, this cutting-edge book introduces the latest advances in particle filter theory, discusses their relevance to defense surveillance systems, and examines defense-related applications of particle filters to nonlinear and non-Gaussian problems. With this hands-on guide, you can develop more accurate and reliable nonlinear filter designs and more precisely predict the performance of these designs. You can also apply particle filters to tracking a ballistic object, detection and tracking of stealthy targets, tracking through the blind Doppler zone, bi-static radar tracking, passive ranging (bearings-only tracking) of maneuvering targets, range-only tracking, terrain-aided tracking of ground vehicles, and group and extended object tracking.

Applied Stochastic Differential Equations

Download Applied Stochastic Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316510085
Total Pages : 327 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä

Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.

State Estimation for Robotics

Download State Estimation for Robotics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107159393
Total Pages : 381 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis State Estimation for Robotics by : Timothy D. Barfoot

Download or read book State Estimation for Robotics written by Timothy D. Barfoot and published by Cambridge University Press. This book was released on 2017-07-31 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: A modern look at state estimation, targeted at students and practitioners of robotics, with emphasis on three-dimensional applications.

Smoothing, Filtering and Prediction

Download Smoothing, Filtering and Prediction PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 9533077522
Total Pages : 290 pages
Book Rating : 4.5/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Smoothing, Filtering and Prediction by : Garry Einicke

Download or read book Smoothing, Filtering and Prediction written by Garry Einicke and published by BoD – Books on Demand. This book was released on 2012-02-24 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the classical smoothing, filtering and prediction techniques together with some more recently developed embellishments for improving performance within applications. It aims to present the subject in an accessible way, so that it can serve as a practical guide for undergraduates and newcomers to the field. The material is organised as a ten-lecture course. The foundations are laid in Chapters 1 and 2, which explain minimum-mean-square-error solution construction and asymptotic behaviour. Chapters 3 and 4 introduce continuous-time and discrete-time minimum-variance filtering. Generalisations for missing data, deterministic inputs, correlated noises, direct feedthrough terms, output estimation and equalisation are described. Chapter 5 simplifies the minimum-variance filtering results for steady-state problems. Observability, Riccati equation solution convergence, asymptotic stability and Wiener filter equivalence are discussed. Chapters 6 and 7 cover the subject of continuous-time and discrete-time smoothing. The main fixed-lag, fixed-point and fixed-interval smoother results are derived. It is shown that the minimum-variance fixed-interval smoother attains the best performance. Chapter 8 attends to parameter estimation. As the above-mentioned approaches all rely on knowledge of the underlying model parameters, maximum-likelihood techniques within expectation-maximisation algorithms for joint state and parameter estimation are described. Chapter 9 is concerned with robust techniques that accommodate uncertainties within problem specifications. An extra term within Riccati equations enables designers to trade-off average error and peak error performance. Chapter 10 rounds off the course by applying the afore-mentioned linear techniques to nonlinear estimation problems. It is demonstrated that step-wise linearisations can be used within predictors, filters and smoothers, albeit by forsaking optimal performance guarantees.

Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions

Download Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions PDF Online Free

Author :
Publisher : Wiley-Liss
ISBN 13 :
Total Pages : 504 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions by : Robert Grover Brown

Download or read book Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises and Solutions written by Robert Grover Brown and published by Wiley-Liss. This book was released on 1997 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this updated edition the main thrust is on applied Kalman filtering. Chapters 1-3 provide a minimal background in random process theory and the response of linear systems to random inputs. The following chapter is devoted to Wiener filtering and the remainder of the text deals with various facets of Kalman filtering with emphasis on applications. Starred problems at the end of each chapter are computer exercises. The authors believe that programming the equations and analyzing the results of specific examples is the best way to obtain the insight that is essential in engineering work.

IEEE ... International Conference on Neural Networks

Download IEEE ... International Conference on Neural Networks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 608 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis IEEE ... International Conference on Neural Networks by : Shun'ichi Amari

Download or read book IEEE ... International Conference on Neural Networks written by Shun'ichi Amari and published by . This book was released on 1997 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Modeling Ordered Choices

Download Modeling Ordered Choices PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139485954
Total Pages : 383 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Modeling Ordered Choices by : William H. Greene

Download or read book Modeling Ordered Choices written by William H. Greene and published by Cambridge University Press. This book was released on 2010-04-08 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.

Discrete Inverse and State Estimation Problems

Download Discrete Inverse and State Estimation Problems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139456938
Total Pages : 357 pages
Book Rating : 4.1/5 (394 download)

DOWNLOAD NOW!


Book Synopsis Discrete Inverse and State Estimation Problems by : Carl Wunsch

Download or read book Discrete Inverse and State Estimation Problems written by Carl Wunsch and published by Cambridge University Press. This book was released on 2006-06-29 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Addressing the problems of making inferences from noisy observations and imperfect theories, this 2006 book introduces many inference tools and practical applications. Starting with fundamental algebraic and statistical ideas, it is ideal for graduate students and researchers in oceanography, climate science, and geophysical fluid dynamics.

Optimal State Estimation

Download Optimal State Estimation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470045337
Total Pages : 554 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Optimal State Estimation by : Dan Simon

Download or read book Optimal State Estimation written by Dan Simon and published by John Wiley & Sons. This book was released on 2006-06-19 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bottom-up approach that enables readers to master and apply the latest techniques in state estimation This book offers the best mathematical approaches to estimating the state of a general system. The author presents state estimation theory clearly and rigorously, providing the right amount of advanced material, recent research results, and references to enable the reader to apply state estimation techniques confidently across a variety of fields in science and engineering. While there are other textbooks that treat state estimation, this one offers special features and a unique perspective and pedagogical approach that speed learning: * Straightforward, bottom-up approach begins with basic concepts and then builds step by step to more advanced topics for a clear understanding of state estimation * Simple examples and problems that require only paper and pen to solve lead to an intuitive understanding of how theory works in practice * MATLAB(r)-based source code that corresponds to examples in the book, available on the author's Web site, enables readers to recreate results and experiment with other simulation setups and parameters Armed with a solid foundation in the basics, readers are presented with a careful treatment of advanced topics, including unscented filtering, high order nonlinear filtering, particle filtering, constrained state estimation, reduced order filtering, robust Kalman filtering, and mixed Kalman/H? filtering. Problems at the end of each chapter include both written exercises and computer exercises. Written exercises focus on improving the reader's understanding of theory and key concepts, whereas computer exercises help readers apply theory to problems similar to ones they are likely to encounter in industry. With its expert blend of theory and practice, coupled with its presentation of recent research results, Optimal State Estimation is strongly recommended for undergraduate and graduate-level courses in optimal control and state estimation theory. It also serves as a reference for engineers and science professionals across a wide array of industries.

Fundamentals of Stochastic Filtering

Download Fundamentals of Stochastic Filtering PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387768963
Total Pages : 395 pages
Book Rating : 4.3/5 (877 download)

DOWNLOAD NOW!


Book Synopsis Fundamentals of Stochastic Filtering by : Alan Bain

Download or read book Fundamentals of Stochastic Filtering written by Alan Bain and published by Springer Science & Business Media. This book was released on 2008-10-08 with total page 395 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient background to enable study of the recent literature. While no prior knowledge of stochastic filtering is required, readers are assumed to be familiar with measure theory, probability theory and the basics of stochastic processes. Most of the technical results that are required are stated and proved in the appendices. Exercises and solutions are included.

Scientific and Technical Aerospace Reports

Download Scientific and Technical Aerospace Reports PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 704 pages
Book Rating : 4.:/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Scientific and Technical Aerospace Reports by :

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1995 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: