A Concise Introduction to Geometric Numerical Integration

Download A Concise Introduction to Geometric Numerical Integration PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482263440
Total Pages : 233 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis A Concise Introduction to Geometric Numerical Integration by : Sergio Blanes

Download or read book A Concise Introduction to Geometric Numerical Integration written by Sergio Blanes and published by CRC Press. This book was released on 2017-11-22 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.

A Concise Introduction to Geometric Numerical Integration

Download A Concise Introduction to Geometric Numerical Integration PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315354861
Total Pages : 287 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis A Concise Introduction to Geometric Numerical Integration by : Sergio Blanes

Download or read book A Concise Introduction to Geometric Numerical Integration written by Sergio Blanes and published by CRC Press. This book was released on 2017-11-22 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover How Geometric Integrators Preserve the Main Qualitative Properties of Continuous Dynamical Systems A Concise Introduction to Geometric Numerical Integration presents the main themes, techniques, and applications of geometric integrators for researchers in mathematics, physics, astronomy, and chemistry who are already familiar with numerical tools for solving differential equations. It also offers a bridge from traditional training in the numerical analysis of differential equations to understanding recent, advanced research literature on numerical geometric integration. The book first examines high-order classical integration methods from the structure preservation point of view. It then illustrates how to construct high-order integrators via the composition of basic low-order methods and analyzes the idea of splitting. It next reviews symplectic integrators constructed directly from the theory of generating functions as well as the important category of variational integrators. The authors also explain the relationship between the preservation of the geometric properties of a numerical method and the observed favorable error propagation in long-time integration. The book concludes with an analysis of the applicability of splitting and composition methods to certain classes of partial differential equations, such as the Schrödinger equation and other evolution equations. The motivation of geometric numerical integration is not only to develop numerical methods with improved qualitative behavior but also to provide more accurate long-time integration results than those obtained by general-purpose algorithms. Accessible to researchers and post-graduate students from diverse backgrounds, this introductory book gets readers up to speed on the ideas, methods, and applications of this field. Readers can reproduce the figures and results given in the text using the MATLAB® programs and model files available online.

Geometric Integrators for Differential Equations with Highly Oscillatory Solutions

Download Geometric Integrators for Differential Equations with Highly Oscillatory Solutions PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 981160147X
Total Pages : 507 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Geometric Integrators for Differential Equations with Highly Oscillatory Solutions by : Xinyuan Wu

Download or read book Geometric Integrators for Differential Equations with Highly Oscillatory Solutions written by Xinyuan Wu and published by Springer Nature. This book was released on 2021-09-28 with total page 507 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of structure-preserving algorithms appeared in the 1980's. The new paradigm brought many innovative changes. The new paradigm wanted to identify the long-time behaviour of the solutions or the existence of conservation laws or some other qualitative feature of the dynamics. Another area that has kept growing in importance within Geometric Numerical Integration is the study of highly-oscillatory problems: problems where the solutions are periodic or quasiperiodic and have to be studied in time intervals that include an extremely large number of periods. As is known, these equations cannot be solved efficiently using conventional methods. A further study of novel geometric integrators has become increasingly important in recent years. The objective of this monograph is to explore further geometric integrators for highly oscillatory problems that can be formulated as systems of ordinary and partial differential equations. Facing challenging scientific computational problems, this book presents some new perspectives of the subject matter based on theoretical derivations and mathematical analysis, and provides high-performance numerical simulations. In order to show the long-time numerical behaviour of the simulation, all the integrators presented in this monograph have been tested and verified on highly oscillatory systems from a wide range of applications in the field of science and engineering. They are more efficient than existing schemes in the literature for differential equations that have highly oscillatory solutions. This book is useful to researchers, teachers, students and engineers who are interested in Geometric Integrators and their long-time behaviour analysis for differential equations with highly oscillatory solutions.

Discrete Mechanics, Geometric Integration and Lie–Butcher Series

Download Discrete Mechanics, Geometric Integration and Lie–Butcher Series PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030013979
Total Pages : 366 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Discrete Mechanics, Geometric Integration and Lie–Butcher Series by : Kurusch Ebrahimi-Fard

Download or read book Discrete Mechanics, Geometric Integration and Lie–Butcher Series written by Kurusch Ebrahimi-Fard and published by Springer. This book was released on 2018-11-05 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume resulted from presentations given at the international “Brainstorming Workshop on New Developments in Discrete Mechanics, Geometric Integration and Lie–Butcher Series”, that took place at the Instituto de Ciencias Matemáticas (ICMAT) in Madrid, Spain. It combines overview and research articles on recent and ongoing developments, as well as new research directions. Why geometric numerical integration? In their article of the same title Arieh Iserles and Reinout Quispel, two renowned experts in numerical analysis of differential equations, provide a compelling answer to this question. After this introductory chapter a collection of high-quality research articles aim at exploring recent and ongoing developments, as well as new research directions in the areas of geometric integration methods for differential equations, nonlinear systems interconnections, and discrete mechanics. One of the highlights is the unfolding of modern algebraic and combinatorial structures common to those topics, which give rise to fruitful interactions between theoretical as well as applied and computational perspectives. The volume is aimed at researchers and graduate students interested in theoretical and computational problems in geometric integration theory, nonlinear control theory, and discrete mechanics.

Numerical Approximation of Ordinary Differential Problems

Download Numerical Approximation of Ordinary Differential Problems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031313437
Total Pages : 391 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Numerical Approximation of Ordinary Differential Problems by : Raffaele D'Ambrosio

Download or read book Numerical Approximation of Ordinary Differential Problems written by Raffaele D'Ambrosio and published by Springer Nature. This book was released on 2023-09-26 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is focused on the numerical discretization of ordinary differential equations (ODEs), under several perspectives. The attention is first conveyed to providing accurate numerical solutions of deterministic problems. Then, the presentation moves to a more modern vision of numerical approximation, oriented to reproducing qualitative properties of the continuous problem along the discretized dynamics over long times. The book finally performs some steps in the direction of stochastic differential equations (SDEs), with the intention of offering useful tools to generalize the techniques introduced for the numerical approximation of ODEs to the stochastic case, as well as of presenting numerical issues natively introduced for SDEs. The book is the result of an intense teaching experience as well as of the research carried out in the last decade by the author. It is both intended for students and instructors: for the students, this book is comprehensive and rather self-contained; for the instructors, there is material for one or more monographic courses on ODEs and related topics. In this respect, the book can be followed in its designed path and includes motivational aspects, historical background, examples and a software programs, implemented in Matlab, that can be useful for the laboratory part of a course on numerical ODEs/SDEs. The book also contains the portraits of several pioneers in the numerical discretization of differential problems, useful to provide a framework to understand their contributes in the presented fields. Last, but not least, rigor joins readability in the book.

Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science

Download Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493969692
Total Pages : 437 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science by : Roderick Melnik

Download or read book Recent Progress and Modern Challenges in Applied Mathematics, Modeling and Computational Science written by Roderick Melnik and published by Springer. This book was released on 2017-09-05 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is an excellent resource for professionals in various areas of applications of mathematics, modeling, and computational science. It focuses on recent progress and modern challenges in these areas. The volume provides a balance between fundamental theoretical and applied developments, emphasizing the interdisciplinary nature of modern trends and detailing state-of-the-art achievements in Applied Mathematics, Modeling, and Computational Science. The chapters have been authored by international experts in their respective fields, making this book ideal for researchers in academia, practitioners, and graduate students. It can also serve as a reference in the diverse selected areas of applied mathematics, modelling, and computational sciences, and is ideal for interdisciplinary collaborations.

Introduction to Abelian Model Structures and Gorenstein Homological Dimensions

Download Introduction to Abelian Model Structures and Gorenstein Homological Dimensions PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 149872535X
Total Pages : 370 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Abelian Model Structures and Gorenstein Homological Dimensions by : Marco A. P. Bullones

Download or read book Introduction to Abelian Model Structures and Gorenstein Homological Dimensions written by Marco A. P. Bullones and published by CRC Press. This book was released on 2016-08-19 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Abelian Model Structures and Gorenstein Homological Dimensions provides a starting point to study the relationship between homological and homotopical algebra, a very active branch of mathematics. The book shows how to obtain new model structures in homological algebra by constructing a pair of compatible complete cotorsion pairs related to a specific homological dimension and then applying the Hovey Correspondence to generate an abelian model structure. The first part of the book introduces the definitions and notations of the universal constructions most often used in category theory. The next part presents a proof of the Eklof and Trlifaj theorem in Grothedieck categories and covers M. Hovey’s work that connects the theories of cotorsion pairs and model categories. The final two parts study the relationship between model structures and classical and Gorenstein homological dimensions and explore special types of Grothendieck categories known as Gorenstein categories. As self-contained as possible, this book presents new results in relative homological algebra and model category theory. The author also re-proves some established results using different arguments or from a pedagogical point of view. In addition, he proves folklore results that are difficult to locate in the literature.

Iterative Methods without Inversion

Download Iterative Methods without Inversion PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315350742
Total Pages : 143 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Iterative Methods without Inversion by : Anatoly Galperin

Download or read book Iterative Methods without Inversion written by Anatoly Galperin and published by CRC Press. This book was released on 2016-11-17 with total page 143 pages. Available in PDF, EPUB and Kindle. Book excerpt: Iterative Methods without Inversion presents the iterative methods for solving operator equations f(x) = 0 in Banach and/or Hilbert spaces. It covers methods that do not require inversions of f (or solving linearized subproblems). The typical representatives of the class of methods discussed are Ulm’s and Broyden’s methods. Convergence analyses of the methods considered are based on Kantorovich’s majorization principle which avoids unnecessary simplifying assumptions like differentiability of the operator or solvability of the equation. These analyses are carried out under a more general assumption about degree of continuity of the operator than traditional Lipschitz continuity: regular continuity. Key Features The methods discussed are analyzed under the assumption of regular continuity of divided difference operator, which is more general and more flexible than the traditional Lipschitz continuity. An attention is given to criterions for comparison of merits of various methods and to the related concept of optimality of a method of certain class. Many publications on methods for solving nonlinear operator equations discuss methods that involve inversion of linearization of the operator, which task is highly problematic in infinite dimensions. Accessible for anyone with minimal exposure to nonlinear functional analysis.

Analytical Methods for Kolmogorov Equations

Download Analytical Methods for Kolmogorov Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315355620
Total Pages : 572 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Analytical Methods for Kolmogorov Equations by : Luca Lorenzi

Download or read book Analytical Methods for Kolmogorov Equations written by Luca Lorenzi and published by CRC Press. This book was released on 2016-10-04 with total page 572 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of this book has a new title that more accurately reflects the table of contents. Over the past few years, many new results have been proven in the field of partial differential equations. This edition takes those new results into account, in particular the study of nonautonomous operators with unbounded coefficients, which has received great attention. Additionally, this edition is the first to use a unified approach to contain the new results in a singular place.

Finite Element Methods for Eigenvalue Problems

Download Finite Element Methods for Eigenvalue Problems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482254654
Total Pages : 368 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Finite Element Methods for Eigenvalue Problems by : Jiguang Sun

Download or read book Finite Element Methods for Eigenvalue Problems written by Jiguang Sun and published by CRC Press. This book was released on 2016-08-19 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers finite element methods for several typical eigenvalues that arise from science and engineering. Both theory and implementation are covered in depth at the graduate level. The background for typical eigenvalue problems is included along with functional analysis tools, finite element discretization methods, convergence analysis, techniques for matrix evaluation problems, and computer implementation. The book also presents new methods, such as the discontinuous Galerkin method, and new problems, such as the transmission eigenvalue problem.

Bounds for Determinants of Linear Operators and their Applications

Download Bounds for Determinants of Linear Operators and their Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351652311
Total Pages : 153 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Bounds for Determinants of Linear Operators and their Applications by : Michael Gil'

Download or read book Bounds for Determinants of Linear Operators and their Applications written by Michael Gil' and published by CRC Press. This book was released on 2017-03-03 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the determinants of linear operators in Euclidean, Hilbert and Banach spaces. Determinants of operators give us an important tool for solving linear equations and invertibility conditions for linear operators, enable us to describe the spectra, to evaluate the multiplicities of eigenvalues, etc. We derive upper and lower bounds, and perturbation results for determinants, and discuss applications of our theoretical results to spectrum perturbations, matrix equations, two parameter eigenvalue problems, as well as to differential, difference and functional-differential equations.

Integration and Cubature Methods

Download Integration and Cubature Methods PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351764764
Total Pages : 501 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Integration and Cubature Methods by : Willi Freeden

Download or read book Integration and Cubature Methods written by Willi Freeden and published by CRC Press. This book was released on 2017-11-22 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: In industry and economics, the most common solutions of partial differential equations involving multivariate numerical integration over cuboids include techniques of iterated one-dimensional approximate integration. In geosciences, however, the integrals are extended over potato-like volumes (such as the ball, ellipsoid, geoid, or the Earth) and their boundary surfaces which require specific multi-variate approximate integration methods. Integration and Cubature Methods: A Geomathematically Oriented Course provides a basic foundation for students, researchers, and practitioners interested in precisely these areas, as well as breaking new ground in integration and cubature in geomathematics.

Elements of Quasigroup Theory and Applications

Download Elements of Quasigroup Theory and Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351646362
Total Pages : 423 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Elements of Quasigroup Theory and Applications by : Victor Shcherbacov

Download or read book Elements of Quasigroup Theory and Applications written by Victor Shcherbacov and published by CRC Press. This book was released on 2017-05-12 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to quasigroup theory along with new structural results on some of the quasigroup classes. Many results are presented with some of them from mathematicians of the former USSR. These included results have not been published before in the western mathematical literature. In addition, many of the achievements obtained with regard to applications of quasigroups in coding theory and cryptology are described.

Delay Differential Evolutions Subjected to Nonlocal Initial Conditions

Download Delay Differential Evolutions Subjected to Nonlocal Initial Conditions PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315351684
Total Pages : 322 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Delay Differential Evolutions Subjected to Nonlocal Initial Conditions by : Monica-Dana Burlică

Download or read book Delay Differential Evolutions Subjected to Nonlocal Initial Conditions written by Monica-Dana Burlică and published by CRC Press. This book was released on 2018-09-03 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Filling a gap in the literature, Delay Differential Evolutions Subjected to Nonlocal Initial Conditions reveals important results on ordinary differential equations (ODEs) and partial differential equations (PDEs). It presents very recent results relating to the existence, boundedness, regularity, and asymptotic behavior of global solutions for differential equations and inclusions, with or without delay, subjected to nonlocal implicit initial conditions. After preliminaries on nonlinear evolution equations governed by dissipative operators, the book gives a thorough study of the existence, uniqueness, and asymptotic behavior of global bounded solutions for differential equations with delay and local initial conditions. It then focuses on two important nonlocal cases: autonomous and quasi-autonomous. The authors next discuss sufficient conditions for the existence of almost periodic solutions, describe evolution systems with delay and nonlocal initial conditions, examine delay evolution inclusions, and extend some results to the multivalued case of reaction-diffusion systems. The book concludes with results on viability for nonlocal evolution inclusions.

Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications

Download Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351649612
Total Pages : 321 pages
Book Rating : 4.3/5 (516 download)

DOWNLOAD NOW!


Book Synopsis Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications by : Daniele Bertaccini

Download or read book Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications written by Daniele Bertaccini and published by CRC Press. This book was released on 2018-02-19 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.

Mathematical Modelling of Waves in Multi-Scale Structured Media

Download Mathematical Modelling of Waves in Multi-Scale Structured Media PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498782108
Total Pages : 248 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Modelling of Waves in Multi-Scale Structured Media by : Alexander B. Movchan

Download or read book Mathematical Modelling of Waves in Multi-Scale Structured Media written by Alexander B. Movchan and published by CRC Press. This book was released on 2017-11-09 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematical Modelling of Waves in Multi-Scale Structured Media presents novel analytical and numerical models of waves in structured elastic media, with emphasis on the asymptotic analysis of phenomena such as dynamic anisotropy, localisation, filtering and polarisation as well as on the modelling of photonic, phononic, and platonic crystals.

Nonlinear Reaction-Diffusion-Convection Equations

Download Nonlinear Reaction-Diffusion-Convection Equations PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498776191
Total Pages : 261 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Reaction-Diffusion-Convection Equations by : Roman Cherniha

Download or read book Nonlinear Reaction-Diffusion-Convection Equations written by Roman Cherniha and published by CRC Press. This book was released on 2017-11-02 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is well known that symmetry-based methods are very powerful tools for investigating nonlinear partial differential equations (PDEs), notably for their reduction to those of lower dimensionality (e.g. to ODEs) and constructing exact solutions. This book is devoted to (1) search Lie and conditional (non-classical) symmetries of nonlinear RDC equations, (2) constructing exact solutions using the symmetries obtained, and (3) their applications for solving some biologically and physically motivated problems. The book summarises the results derived by the authors during the last 10 years and those obtained by some other authors.