Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
3d Gan Nanostructures For Electronic And Optoelectronic Devices
Download 3d Gan Nanostructures For Electronic And Optoelectronic Devices full books in PDF, epub, and Kindle. Read online 3d Gan Nanostructures For Electronic And Optoelectronic Devices ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis GaN and ZnO-based Materials and Devices by : Stephen Pearton
Download or read book GaN and ZnO-based Materials and Devices written by Stephen Pearton and published by Springer Science & Business Media. This book was released on 2012-01-14 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: The AlInGaN and ZnO materials systems have proven to be one of the scientifically and technologically important areas of development over the past 15 years, with applications in UV/visible optoelectronics and in high-power/high-frequency microwave devices. The pace of advances in these areas has been remarkable and the wide band gap community relies on books like the one we are proposing to provide a review and summary of recent progress.
Book Synopsis Semiconductor Nanostructures for Optoelectronic Devices by : Gyu-Chul Yi
Download or read book Semiconductor Nanostructures for Optoelectronic Devices written by Gyu-Chul Yi and published by Springer Science & Business Media. This book was released on 2012-01-13 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the fabrication of optoelectronic nanodevices. The structures considered are nanowires, nanorods, hybrid semiconductor nanostructures, wide bandgap nanostructures for visible light emitters and graphene. The device applications of these structures are broadly explained. The book deals also with the characterization of semiconductor nanostructures. It appeals to researchers and graduate students.
Book Synopsis Semiconductor Nanostructures for Optoelectronic Applications by : Todd D. Steiner
Download or read book Semiconductor Nanostructures for Optoelectronic Applications written by Todd D. Steiner and published by Artech House. This book was released on 2004 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: Annotation Tiny structures measurable on the nanometer scale (one-billionth of a meter) are known as nanostructures, and nanotechnology is the emerging application of these nanostructures into useful nanoscale devices. As we enter the 21st century, more and more professional are using nanotechnology to create semiconductors for a variety of applications, including communications, information technology, medical, and transportation devices. Written by today's best researchers of semiconductor nanostructures, this cutting-edge resource provides a snapshot of this exciting and fast-changing field. The book covers the latest advances in nanotechnology and discusses the applications of nanostructures to optoelectronics, photonics, and electronics.
Book Synopsis Semiconductor Nanowires I: Growth and Theory by :
Download or read book Semiconductor Nanowires I: Growth and Theory written by and published by Academic Press. This book was released on 2015-11-26 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semiconductor Nanowires: Part A, Number 93 in the Semiconductor and Semimetals series, focuses on semiconductor nanowires. - Contains comments from leading contributors in the field semiconductor nanowires - Provides reviews of the most important recent literature - Presents a broad view, including an examination of semiconductor nanowires - Comprises up to date advancements in the technological development of nanowire devices and systems, and is comprehensive enough to be used as a reference book on nanowires as well as a graduate student text book
Book Synopsis 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices by : Anuj Kumar
Download or read book 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices written by Anuj Kumar and published by CRC Press. This book was released on 2024-11-07 with total page 335 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials, electronic, photonic, and optoelectronic applications, as well as future plans for improving performance, no modern book covers as much ground. The planned book will fill such gaps by offering a comprehensive analysis of two-dimensional semiconducting materials. This book covers a range of advanced 2D materials, their fundamentals, and the chemistry for many emerging applications. All the chapters are covered by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries. • Covers topics such as fundamentals and advanced knowledge of two-dimensional semiconducting materials • Provides details about the recent methods used for the synthesis, characterization, and applications of two-dimensional semiconducting materials • Covers the state-of-the-art development in two-dimensional semiconducting materials and their emerging applications This book provides directions to students, scientists, and researchers in semiconductors and related disciplines to help them better understand the physics, characteristics, and applications of 2D semiconductors.
Book Synopsis Handbook of Optoelectronic Device Modeling and Simulation by : Joachim Piprek
Download or read book Handbook of Optoelectronic Device Modeling and Simulation written by Joachim Piprek and published by CRC Press. This book was released on 2017-10-10 with total page 835 pages. Available in PDF, EPUB and Kindle. Book excerpt: • Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. • Gives a broad overview of concepts with concise explanations illustrated by real results. • Compares different levels of modeling, from simple analytical models to complex numerical models. • Discusses practical methods of model validation. • Includes an overview of numerical techniques.
Book Synopsis Semiconductor Nanotechnology by : Stephen M. Goodnick
Download or read book Semiconductor Nanotechnology written by Stephen M. Goodnick and published by Springer. This book was released on 2018-07-26 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents research dedicated to solving scientific and technological problems in many areas of electronics, photonics and renewable energy. Energy and information are interconnected and are essential elements for the development of human society. Transmission, processing and storage of information requires energy consumption, while the efficient use and access to new energy sources requires new information (ideas and expertise) and the design of novel systems such as photovoltaic devices, fuel cells and batteries. Semiconductor physics creates the knowledge base for the development of information (computers, cell phones, etc.) and energy (photovoltaic) technologies. The exchange of ideas and expertise between these two technologies is critical and expands beyond semiconductors. Continued progress in information and renewable energy technologies requires miniaturization of devices and reduction of costs, energy and material consumption. The latest generation of electronic devices is now approaching nanometer scale dimensions, new materials are being introduced into electronics manufacturing at an unprecedented rate, and alternative technologies to mainstream CMOS are evolving. Nanotechnology is widely accepted as a source of potential solutions in securing future progress for information and energy technologies. Semiconductor Nanotechnology features chapters that cover the following areas: atomic scale materials design, bio- and molecular electronics, high frequency electronics, fabrication of nanodevices, magnetic materials and spintronics, materials and processes for integrated and subwave optoelectronics, nanoCMOS, new materials for FETs and other devices, nanoelectronics system architecture, nano optics and lasers, non-silicon materials and devices, chemical and biosensors, quantum effects in devices, nano science and technology applications in the development of novel solar energy devices, and fuel cells and batteries.
Book Synopsis Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics by : Mohamed Henini
Download or read book Handbook of Self Assembled Semiconductor Nanostructures for Novel Devices in Photonics and Electronics written by Mohamed Henini and published by Elsevier. This book was released on 2011-07-28 with total page 862 pages. Available in PDF, EPUB and Kindle. Book excerpt: The self-assembled nanostructured materials described in this book offer a number of advantages over conventional material technologies in a wide range of sectors. World leaders in the field of self-organisation of nanostructures review the current status of research and development in the field, and give an account of the formation, properties, and self-organisation of semiconductor nanostructures. Chapters on structural, electronic and optical properties, and devices based on self-organised nanostructures are also included. Future research work on self-assembled nanostructures will connect diverse areas of material science, physics, chemistry, electronics and optoelectronics. This book will provide an excellent starting point for workers entering the field and a useful reference to the nanostructured materials research community. It will be useful to any scientist who is involved in nanotechnology and those wishing to gain a view of what is possible with modern fabrication technology. Mohamed Henini is a Professor of Applied Physics at the University of Nottingham. He has authored and co-authored over 750 papers in international journals and conference proceedings and is the founder of two international conferences. He is the Editor-in-Chief of Microelectronics Journal and has edited three previous Elsevier books. - Contributors are world leaders in the field - Brings together all the factors which are essential in self-organisation of quantum nanostructures - Reviews the current status of research and development in self-organised nanostructured materials - Provides a ready source of information on a wide range of topics - Useful to any scientist who is involved in nanotechnology - Excellent starting point for workers entering the field - Serves as an excellent reference manual
Book Synopsis Micro Light Emitting Diode: Fabrication and Devices by : Jong-Hyun Ahn
Download or read book Micro Light Emitting Diode: Fabrication and Devices written by Jong-Hyun Ahn and published by Springer Nature. This book was released on 2022-01-04 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on basic fundamental and applied aspects of micro-LED, ranging from chip fabrication to transfer technology, panel integration, and various applications in fields ranging from optics to electronics to and biomedicine. The focus includes the most recent developments, including the uses in large large-area display, VR/AR display, and biomedical applications. The book is intended as a reference for advanced students and researchers with backgrounds in optoelectronics and display technology. Micro-LEDs are thin, light-emitting diodes, which have attracted considerable research interest in the last few years. They exhibit a set of exceptional properties and unique optical, electrical, and mechanical behaviors of fundamental interest, with the capability to support a range of important exciting applications that cannot be easily addressed with other technologies. The content is divided into two parts to make the book approachable to readers of various backgrounds and interests. The first provides a detailed description with fundamental materials and production approaches and assembly/manufacturing strategies designed to target readers who seek an understanding ofof essential materials and production approaches and assembly/manufacturing strategies designed to target readers who want to understand the foundational aspects. The second provides detailed, comprehensive coverage of the wide range of device applications that have been achieved. This second part targets readers who seek a detailed account of the various applications that are enabled by micro-LEDs.
Book Synopsis FIB Nanostructures by : Zhiming M. Wang
Download or read book FIB Nanostructures written by Zhiming M. Wang and published by Springer Science & Business Media. This book was released on 2014-01-04 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: FIB Nanostructures reviews a range of methods, including milling, etching, deposition, and implantation, applied to manipulate structures at the nanoscale. Focused Ion Beam (FIB) is an important tool for manipulating the structure of materials at the nanoscale, and substantially extends the range of possible applications of nanofabrication. FIB techniques are widely used in the semiconductor industry and in materials research for deposition and ablation, including the fabrication of nanostructures such as nanowires, nanotubes, nanoneedles, graphene sheets, quantum dots, etc. The main objective of this book is to create a platform for knowledge sharing and dissemination of the latest advances in novel areas of FIB for nanostructures and related materials and devices, and to provide a comprehensive introduction to the field and directions for further research. Chapters written by leading scientists throughout the world create a fundamental bridge between focused ion beam and nanotechnology that is intended to stimulate readers' interest in developing new types of nanostructures for application to semiconductor technology. These applications are increasingly important for the future development of materials science, energy technology, and electronic devices. The book can be recommended for physics, electrical engineering, and materials science departments as a reference on materials science and device design.
Book Synopsis Materials for Sustainable Energy Storage at the Nanoscale by : Fabian Ifeanyichukwu Ezema
Download or read book Materials for Sustainable Energy Storage at the Nanoscale written by Fabian Ifeanyichukwu Ezema and published by CRC Press. This book was released on 2023-07-21 with total page 747 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book Materials for Sustainable Energy Storage Devices at the Nanoscale anticipates covering all electrochemical energy storage devices such as supercapacitors, lithium-ion batteries (LIBs), and fuel cells, transformation and enhancement materials for solar cells, photocatalysis, etc. The focal objective of the book is to deliver stunning and current information to the materials application at nanoscale to researchers and scientists in our contemporary time towardthe enhancement of energy conversion and storage devices. However, the contents of the proposed book, Materials for Sustainable Energy Storage at the Nanoscale, will cover various fundamental principles and wide knowledge of different energy conversion and storage devices with respect to their advancement due to the emergence of nanoscale materials for sustainable storage devices. This book is targeted to be award-winning as well as a reference book for researchers and scientists working on different types of nanoscale materials-based energy storage and conversion devices. Features Comprehensive overview of energy storage devices, an important field of interest for researchers worldwide Explores the importance and growing impact of batteries and supercapacitors Emphasizes the fundamental theories, electrochemical mechanism, and its computational view point and discusses recent developments in electrode designing based on nanomaterials, separators, and fabrication of advanced devices and their performances Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He earned a PhD in Physics and Astronomy from the University of Nigeria, Nsukka. His research focused on several areas of Materials Science, from synthesis and characterizations of particles and thin-film materials through chemical routes with emphasis on energy applications. For the last 15 years, he has been working on energy conversion and storage (cathodes, anodes, supercapacitors, solar cells, among others), including novel methods of synthesis, characterization and evaluation of the electrochemical and optical properties. He has published about 180 papers in various international journals and given over 50 talks at various conferences. His h-index is 21 with over 1500 citations and he has served as reviewer for several high impact journals and as an editorial board member. Dr. M.Anusuya, M.Sc., M.Phil., B.Ed., PhD is specialized in Material science, Thin Film Technology, Nano Science, and Crystallography. She is working as a Registrar of Indra Ganesan Group of Institutions, Trichy, Tamilnadu, India. Earlier to this, she served as a Vice-Principal at Trichy Engineering College, Trichy, Tamilnadu, India.. Being an administrator and teacher, with more than 25 years’ experience, for her perpetual excellence in academics she has been recognized with many awards. She has received over 45 awards in Academic and Social Activity. She has published more than 30 research papers in National and International journals, 7 chapters in edited books, 5 patents, presented 50 papers in the conferences and organized more than 200 webinars, both national and internationally. Dr Assumpta C. Nwanya is a Lecturer and a FLAIR (Future Leaders - African Independent Research) Scholar at the Department of Physics and Astronomy, University of Nigeria, Nsukka. She obtained her PhD in 2017 (University of Nigeria, Nsukka) with specialisation in the synthesis of nanostructured materials for applications in photovoltaics and electrochemical energy storage (batteries and supercapacitors) as well as for sensing. She was a Postdoctoral Fellow under the UNESCO-University of South Africa (UNISA) Africa Chair in Nanoscience and Nanotechnology (2018-2020). She is a research Affiliate with the SensorLab, University of the Western Cape Sensor Laboratories, Cape Town, South Africa. Dr Nwanya is a very active researcher and has published more than 85 scientific articles in high impact journals and has a Google Scholar’s H-index of 24 and 1475 citations.
Book Synopsis Integrated Interconnect Technologies for 3D Nanoelectronic Systems by : Muhannad S. Bakir
Download or read book Integrated Interconnect Technologies for 3D Nanoelectronic Systems written by Muhannad S. Bakir and published by Artech House. This book was released on 2008-11-30 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This cutting-edge book on off-chip technologies puts the hottest breakthroughs in high-density compliant electrical interconnects, nanophotonics, and microfluidics at your fingertips, integrating the full range of mathematics, physics, and technology issues together in a single comprehensive source. You get full details on state-of-the-art I/O interconnects and packaging, including mechanically compliant I/O approaches, fabrication, and assembly, followed by the latest advances and applications in power delivery design, analysis, and modeling. The book explores interconnect structures, materials, and packages for achieving high-bandwidth off-chip electrical communication, including optical interconnects and chip-to-chip signaling approaches, and brings you up to speed on CMOS integrated optical devices, 3D integration, wafer stacking technology, and through-wafer interconnects.
Book Synopsis Iii-nitride Semiconductor Materials by : Zhe Chuan Feng
Download or read book Iii-nitride Semiconductor Materials written by Zhe Chuan Feng and published by World Scientific. This book was released on 2006-03-20 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: III-Nitride semiconductor materials — (Al, In, Ga)N — are excellent wide band gap semiconductors very suitable for modern electronic and optoelectronic applications. Remarkable breakthroughs have been achieved recently, and current knowledge and data published have to be modified and upgraded. This book presents the new developments and achievements in the field.Written by renowned experts, the review chapters in this book cover the most important topics and achievements in recent years, discuss progress made by different groups, and suggest future directions. Each chapter also describes the basis of theory or experiment.The III-Nitride-based industry is building up and new economic developments from these materials are promising. It is expected that III-Nitride-based LEDs may replace traditional light bulbs to realize a revolution in lighting. This book is a valuable source of information for engineers, scientists and students working towards such goals./a
Book Synopsis Graphene Photonics by : Jia-Ming Liu
Download or read book Graphene Photonics written by Jia-Ming Liu and published by Cambridge University Press. This book was released on 2018-12-13 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graphene is a single-layer crystal of carbon, the thinnest two-dimensional material. It has unique electronic and photonic properties.
Book Synopsis Microscopy of Semiconducting Materials 2001 by : A.G. Cullis
Download or read book Microscopy of Semiconducting Materials 2001 written by A.G. Cullis and published by CRC Press. This book was released on 2018-01-18 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Institute of Physics Conference Series is a leading International medium for the rapid publication of proceedings of major conferences and symposia reviewing new developments in physics and related areas. Volumes in the series comprise original refereed papers and are regarded as standard referee works. As such, they are an essential part of major libration collections worldwide. The twelfth conference on the Microscopy of Semiconducting Materials (MSM) was held at the University of Oxford, 25-29 March 2001. MSM conferences focus on recent international advances in semiconductor studies carried out by all forms of microscopy. The event was organized with scientific sponsorship by the Royal Microscopical Society, The Electron Microscopy and Analysis Group of the Institute of Physics and the Materials Research Society. With the continual shrinking of electronic device dimensions and accompanying enhancement in device performance, the understanding of semiconductor microscopic properties at the nanoscale (and even at the atomic scale) is increasingly critical for further progress to be achieved. This conference proceedings provides an overview of the latest instrumentation, analysis techniques and state-of-the-art advances in semiconducting materials science for solid state physicists, chemists, and materials scientists.
Book Synopsis Piezotronics and Piezo-Phototronics by : Zhong Lin Wang
Download or read book Piezotronics and Piezo-Phototronics written by Zhong Lin Wang and published by Springer Science & Business Media. This book was released on 2013-01-11 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental principle of piezotronics and piezo-phototronics were introduced by Wang in 2007 and 2010, respectively. Due to the polarization of ions in a crystal that has non-central symmetry in materials, such as the wurtzite structured ZnO, GaN and InN, a piezoelectric potential (piezopotential) is created in the crystal by applying a stress. Owing to the simultaneous possession of piezoelectricity and semiconductor properties, the piezopotential created in the crystal has a strong effect on the carrier transport at the interface/junction. Piezotronics is for devices fabricated using the piezopotential as a “gate” voltage to control charge carrier transport at a contact or junction. The piezo-phototronic effect uses the piezopotential to control the carrier generation, transport, separation and/or recombination for improving the performance of optoelectronic devices, such as photon detector, solar cell and LED. The functionality offered by piezotroics and piezo-phototronics are complimentary to CMOS technology. There is an effective integration of piezotronic and piezo-phototronic devices with silicon based CMOS technology. Unique applications can be found in areas such as human-computer interfacing, sensing and actuating in nanorobotics, smart and personalized electronic signatures, smart MEMS/NEMS, nanorobotics and energy sciences. This book introduces the fundamentals of piezotronics and piezo-phototronics and advanced applications. It gives guidance to researchers, engineers and graduate students.
Book Synopsis Semiconductor Nanostructures by : Dieter Bimberg
Download or read book Semiconductor Nanostructures written by Dieter Bimberg and published by Springer Science & Business Media. This book was released on 2008-06-03 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reducing the size of a coherently grown semiconductor cluster in all three directions of space to a value below the de Broglie wavelength of a charge carrier leads to complete quantization of the energy levels, density of states, etc. Such “quantum dots” are more similar to giant atoms in a dielectric cage than to classical solids or semiconductors showing a dispersion of energy as a function of wavevector. Their electronic and optical properties depend strongly on their size and shape, i.e. on their geometry. By designing the geometry by controlling the growth of QDs, absolutely novel possibilities for material design leading to novel devices are opened. This multiauthor book written by world-wide recognized leaders of their particular fields and edited by the recipient of the Max-Born Award and Medal 2006 Professor Dieter Bimberg reports on the state of the art of the growing of quantum dots, the theory of self-organised growth, the theory of electronic and excitonic states, optical properties and transport in a variety of materials. It covers the subject from the early work beginning of the 1990s up to 2006. The topics addressed in the book are the focus of research in all leading semiconductor and optoelectronic device laboratories of the world.