Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Zeta Functions And The Periodic Orbit Structure Of Hyperbolic Dynamics
Download Zeta Functions And The Periodic Orbit Structure Of Hyperbolic Dynamics full books in PDF, epub, and Kindle. Read online Zeta Functions And The Periodic Orbit Structure Of Hyperbolic Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics by : William Parry
Download or read book Zeta Functions and the Periodic Orbit Structure of Hyperbolic Dynamics written by William Parry and published by . This book was released on 1990 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Hyperbolic Dynamics, Fluctuations and Large Deviations by : D. Dolgopyat
Download or read book Hyperbolic Dynamics, Fluctuations and Large Deviations written by D. Dolgopyat and published by American Mathematical Soc.. This book was released on 2015-04-01 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the semester-long special program on Hyperbolic Dynamics, Large Deviations and Fluctuations, which was held from January-June 2013, at the Centre Interfacultaire Bernoulli, École Polytechnique Fédérale de Lausanne, Switzerland. The broad theme of the program was the long-term behavior of dynamical systems and their statistical behavior. During the last 50 years, the statistical properties of dynamical systems of many different types have been the subject of extensive study in statistical mechanics and thermodynamics, ergodic and probability theories, and some areas of mathematical physics. The results of this study have had a profound effect on many different areas in mathematics, physics, engineering and biology. The papers in this volume cover topics in large deviations and thermodynamics formalism and limit theorems for dynamic systems. The material presented is primarily directed at researchers and graduate students in the very broad area of dynamical systems and ergodic theory, but will also be of interest to researchers in related areas such as statistical physics, spectral theory and some aspects of number theory and geometry.
Book Synopsis Dimension Theory of Hyperbolic Flows by : Luís Barreira
Download or read book Dimension Theory of Hyperbolic Flows written by Luís Barreira and published by Springer Science & Business Media. This book was released on 2013-06-12 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dimension theory of dynamical systems has progressively developed, especially over the last two decades, into an independent and extremely active field of research. Its main aim is to study the complexity of sets and measures that are invariant under the dynamics. In particular, it is essential to characterizing chaotic strange attractors. To date, some parts of the theory have either only been outlined, because they can be reduced to the case of maps, or are too technical for a wider audience. In this respect, the present monograph is intended to provide a comprehensive guide. Moreover, the text is self-contained and with the exception of some basic results in Chapters 3 and 4, all the results in the book include detailed proofs. The book is intended for researchers and graduate students specializing in dynamical systems who wish to have a sufficiently comprehensive view of the theory together with a working knowledge of its main techniques. The discussion of some open problems is also included in the hope that it may lead to further developments. Ideally, readers should have some familiarity with the basic notions and results of ergodic theory and hyperbolic dynamics at the level of an introductory course in the area, though the initial chapters also review all the necessary material.
Book Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel Lapidus
Download or read book Fractal Geometry, Complex Dimensions and Zeta Functions written by Michel Lapidus and published by Springer Science & Business Media. This book was released on 2012-09-20 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Throughout Geometry, Complex Dimensions and Zeta Functions, Second Edition, new results are examined and a new definition of fractality as the presence of nonreal complex dimensions with positive real parts is presented. The new final chapter discusses several new topics and results obtained since the publication of the first edition.
Book Synopsis Ergodic Theory, Hyperbolic Dynamics and Dimension Theory by : Luís Barreira
Download or read book Ergodic Theory, Hyperbolic Dynamics and Dimension Theory written by Luís Barreira and published by Springer Science & Business Media. This book was released on 2012-04-28 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last two decades, the dimension theory of dynamical systems has progressively developed into an independent and extremely active field of research. The main aim of this volume is to offer a unified, self-contained introduction to the interplay of these three main areas of research: ergodic theory, hyperbolic dynamics, and dimension theory. It starts with the basic notions of the first two topics and ends with a sufficiently high-level introduction to the third. Furthermore, it includes an introduction to the thermodynamic formalism, which is an important tool in dimension theory. The volume is primarily intended for graduate students interested in dynamical systems, as well as researchers in other areas who wish to learn about ergodic theory, thermodynamic formalism, or dimension theory of hyperbolic dynamics at an intermediate level in a sufficiently detailed manner. In particular, it can be used as a basis for graduate courses on any of these three subjects. The text can also be used for self-study: it is self-contained, and with the exception of some well-known basic facts from other areas, all statements include detailed proofs.
Book Synopsis Fractal Geometry, Complex Dimensions and Zeta Functions by : Michel L. Lapidus
Download or read book Fractal Geometry, Complex Dimensions and Zeta Functions written by Michel L. Lapidus and published by Springer Science & Business Media. This book was released on 2007-08-08 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Number theory, spectral geometry, and fractal geometry are interlinked in this study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. The Riemann hypothesis is given a natural geometric reformulation in context of vibrating fractal strings, and the book offers explicit formulas extended to apply to the geometric, spectral and dynamic zeta functions associated with a fractal.
Book Synopsis Dynamical, Spectral, and Arithmetic Zeta Functions by : Michel Laurent Lapidus
Download or read book Dynamical, Spectral, and Arithmetic Zeta Functions written by Michel Laurent Lapidus and published by American Mathematical Soc.. This book was released on 2001 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: The original zeta function was studied by Riemann as part of his investigation of the distribution of prime numbers. Other sorts of zeta functions were defined for number-theoretic purposes, such as the study of primes in arithmetic progressions. This led to the development of $L$-functions, which now have several guises. It eventually became clear that the basic construction used for number-theoretic zeta functions can also be used in other settings, such as dynamics, geometry, and spectral theory, with remarkable results. This volume grew out of the special session on dynamical, spectral, and arithmetic zeta functions held at the annual meeting of the American Mathematical Society in San Antonio, but also includes four articles that were invited to be part of the collection. The purpose of the meeting was to bring together leading researchers, to find links and analogies between their fields, and to explore new methods. The papers discuss dynamical systems, spectral geometry on hyperbolic manifolds, trace formulas in geometry and in arithmetic, as well as computational work on the Riemann zeta function. Each article employs techniques of zeta functions. The book unifies the application of these techniques in spectral geometry, fractal geometry, and number theory. It is a comprehensive volume, offering up-to-date research. It should be useful to both graduate students and confirmed researchers.
Book Synopsis Finer Thermodynamic Formalism – Distance Expanding Maps and Countable State Subshifts of Finite Type, Conformal GDMSs, Lasota-Yorke Maps and Fractal Geometry by : Mariusz Urbański
Download or read book Finer Thermodynamic Formalism – Distance Expanding Maps and Countable State Subshifts of Finite Type, Conformal GDMSs, Lasota-Yorke Maps and Fractal Geometry written by Mariusz Urbański and published by Walter de Gruyter GmbH & Co KG. This book was released on 2022-05-23 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book contains a detailed treatment of thermodynamic formalism on general compact metrizable spaces. Topological pressure, topological entropy, variational principle, and equilibrium states are presented in detail. Abstract ergodic theory is also given a significant attention. Ergodic theorems, ergodicity, and Kolmogorov-Sinai metric entropy are fully explored. Furthermore, the book gives the reader an opportunity to find rigorous presentation of thermodynamic formalism for distance expanding maps and, in particular, subshifts of finite type over a finite alphabet. It also provides a fairly complete treatment of subshifts of finite type over a countable alphabet. Transfer operators, Gibbs states and equilibrium states are, in this context, introduced and dealt with. Their relations are explored. All of this is applied to fractal geometry centered around various versions of Bowen’s formula in the context of expanding conformal repellors, limit sets of conformal iterated function systems and conformal graph directed Markov systems. A unique introduction to iteration of rational functions is given with emphasize on various phenomena caused by rationally indifferent periodic points. Also, a fairly full account of the classicaltheory of Shub’s expanding endomorphisms is given; it does not have a book presentation in English language mathematical literature.
Book Synopsis Modeling, Dynamics, Optimization and Bioeconomics II by : Alberto A. Pinto
Download or read book Modeling, Dynamics, Optimization and Bioeconomics II written by Alberto A. Pinto and published by Springer. This book was released on 2017-09-30 with total page 531 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concepts and techniques presented in this volume originated from the fields of dynamics, statistics, control theory, computer science and informatics, and are applied to novel and innovative real-world applications. Over the past few decades, the use of dynamic systems, control theory, computing, data mining, machine learning and simulation has gained the attention of numerous researchers from all over the world. Admirable scientific projects using both model-free and model-based methods coevolved at today’s research centers and are introduced in conferences around the world, yielding new scientific advances and helping to solve important real-world problems. One important area of progress is the bioeconomy, where advances in the life sciences are used to produce new products in a sustainable and clean manner. In this book, scientists from all over the world share their latest insights and important findings in the field. The majority of the contributed papers for this volume were written by participants of the 3rd International Conference on Dynamics, Games and Science, DGSIII, held at the University of Porto in February 2014, and at the Berkeley Bioeconomy Conference at the University of California at Berkeley in March 2014. The aim of the project of this book “Modeling, Dynamics, Optimization and Bioeconomics II” follows the same aim as its companion piece, “Modeling, Dynamics, Optimization and Bioeconomics I,” namely, the exploration of emerging and cutting-edge theories and methods for modeling, optimization, dynamics and bioeconomy.
Book Synopsis Dynamics, Games and Science by : Jean-Pierre Bourguignon
Download or read book Dynamics, Games and Science written by Jean-Pierre Bourguignon and published by Springer. This book was released on 2015-07-24 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this volume is research carried out as part of the program Mathematics of Planet Earth, which provides a platform to showcase the essential role of mathematics in addressing problems of an economic and social nature and creating a context for mathematicians and applied scientists to foster mathematical and interdisciplinary developments that will be necessary to tackle a myriad of issues and meet future global economic and social challenges. Earth is a planet with dynamic processes in its mantle, oceans and atmosphere creating climate, causing natural disasters and influencing fundamental aspects of life and life-supporting systems. In addition to these natural processes, human activity has developed highly complex systems, including economic and financial systems; the World Wide Web; frameworks for resource management, transportation, energy production and utilization; health care delivery, and social organizations. This development has increased to the point where it impacts the stability and equilibrium in human societies. Issues such as financial and economic crisis, sustainability, management of resources, risk analysis, and global integration have come to the fore. Written by some of the world’s leading specialists, this book presents the proceedings of the International Conference and Advanced School Planet Earth, Dynamics, Games and Science II, held in Lisbon, Portugal, 28 August -6 September 2013, which was organized by the International Center of Mathematics (CIM) as a partner institution of the international program Mathematics of Planet Earth 2013. The book describes the state of the art in advanced research and ultimate techniques in modeling natural, economic and social phenomena. It constitutes a tool and a framework for researchers and graduate students, both in mathematics and applied sciences, focusing mainly on dynamical systems, game theory and applied sciences.
Book Synopsis Analytic Endomorphisms of the Riemann Sphere by : Mariusz Urbański
Download or read book Analytic Endomorphisms of the Riemann Sphere written by Mariusz Urbański and published by Walter de Gruyter GmbH & Co KG. This book was released on 2023-09-05 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex dynamics is one of the most fascinating subjects of study and research in mathematics. This third volume in the series entitled Non-Invertible Dynamical Systems not only examines topological and analytical properties of the iteration of rational functions on the Riemann sphere (in particular, the Fatou and Julia sets) but also focuses on thermodynamic, ergodic and fractal properties of these functions (notably, equilibrium states, Bowen's formula and Sullivan’s conformal measures). This volume builds on the first two volumes in the series while simultaneously developing some methods and techniques specific to rational functions.
Book Synopsis Spectrum and Dynamics by : Dmitry Jakobson
Download or read book Spectrum and Dynamics written by Dmitry Jakobson and published by American Mathematical Soc.. This book was released on 2010-01-01 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains a collection of papers presented at the workshop on Spectrum and Dynamics held at the CRM in April 2008. In recent years. many new exciting connections have been established between the spectral theory of elliptic operators and the theory of dynamical systems. A number of articles in the proceedings highlight these discoveries. The volume features a diversity of topics. Such as quantum chaos, spectral geometry. Semiclassical analysis, number theory and ergodic theory. Apart from the research papers aimed at the experts, this book includes several survey articles accessible to a broad math ematical audience.
Book Synopsis Open Conformal Systems and Perturbations of Transfer Operators by : Mark Pollicott
Download or read book Open Conformal Systems and Perturbations of Transfer Operators written by Mark Pollicott and published by Springer. This book was released on 2018-02-05 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this book is on open conformal dynamical systems corresponding to the escape of a point through an open Euclidean ball. The ultimate goal is to understand the asymptotic behavior of the escape rate as the radius of the ball tends to zero. In the case of hyperbolic conformal systems this has been addressed by various authors. The conformal maps considered in this book are far more general, and the analysis correspondingly more involved. The asymptotic existence of escape rates is proved and they are calculated in the context of (finite or infinite) countable alphabets, uniformly contracting conformal graph-directed Markov systems, and in particular, conformal countable alphabet iterated function systems. These results have direct applications to interval maps, rational functions and meromorphic maps. Towards this goal the authors develop, on a purely symbolic level, a theory of singular perturbations of Perron--Frobenius (transfer) operators associated with countable alphabet subshifts of finite type and Hölder continuous summable potentials. This leads to a fairly full account of the structure of the corresponding open dynamical systems and their associated surviving sets.
Book Synopsis Random Walks and Geometry by : Vadim Kaimanovich
Download or read book Random Walks and Geometry written by Vadim Kaimanovich and published by Walter de Gruyter. This book was released on 2008-08-22 with total page 545 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die jüngsten Entwicklungen zeigen, dass sich Wahrscheinlichkeitsverfahren zu einem sehr wirkungsvollen Werkzeug entwickelt haben, und das auf so unterschiedlichen Gebieten wie statistische Physik, dynamische Systeme, Riemann'sche Geometrie, Gruppentheorie, harmonische Analyse, Graphentheorie und Informatik.
Book Synopsis Cellular Automata, Dynamical Systems and Neural Networks by : E. Goles
Download or read book Cellular Automata, Dynamical Systems and Neural Networks written by E. Goles and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the courses given at the Third School on Statistical Physics and Cooperative Systems held at Santiago, Chile, from 14th to 18th December 1992. The main idea of this periodic school was to bring together scientists work with recent trends in Statistical Physics. More precisely ing on subjects related related with non linear phenomena, dynamical systems, ergodic theory, cellular au tomata, symbolic dynamics, large deviation theory and neural networks. Scientists working in these subjects come from several areas: mathematics, biology, physics, computer science, electrical engineering and artificial intelligence. Recently, a very important cross-fertilization has taken place with regard to the aforesaid scientific and technological disciplines, so as to give a new approach to the research whose common core remains in statistical physics. Each contribution is devoted to one or more of the previous subjects. In most cases they are structured as surveys, presenting at the same time an original point of view about the topic and showing mostly new results. The expository text of Fran
Book Synopsis Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval by : David Ruelle
Download or read book Dynamical Zeta Functions for Piecewise Monotone Maps of the Interval written by David Ruelle and published by American Mathematical Soc.. This book was released on 1994 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a general introduction to the subject, this title presents a detailed study of the zeta functions associated with piecewise monotone maps of the interval $ 0,1]$. In particular, it gives a proof of a generalized form of the Baladi-Keller theorem relating the poles of $\zeta (z)$ and the eigenvalues of the transfer operator.
Book Synopsis The Mathematician's Brain by : David Ruelle
Download or read book The Mathematician's Brain written by David Ruelle and published by Princeton University Press. This book was released on 2018-06-26 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematician's Brain poses a provocative question about the world's most brilliant yet eccentric mathematical minds: were they brilliant because of their eccentricities or in spite of them? In this thought-provoking and entertaining book, David Ruelle, the well-known mathematical physicist who helped create chaos theory, gives us a rare insider's account of the celebrated mathematicians he has known-their quirks, oddities, personal tragedies, bad behavior, descents into madness, tragic ends, and the sublime, inexpressible beauty of their most breathtaking mathematical discoveries. Consider the case of British mathematician Alan Turing. Credited with cracking the German Enigma code during World War II and conceiving of the modern computer, he was convicted of "gross indecency" for a homosexual affair and died in 1954 after eating a cyanide-laced apple--his death was ruled a suicide, though rumors of assassination still linger. Ruelle holds nothing back in his revealing and deeply personal reflections on Turing and other fellow mathematicians, including Alexander Grothendieck, René Thom, Bernhard Riemann, and Felix Klein. But this book is more than a mathematical tell-all. Each chapter examines an important mathematical idea and the visionary minds behind it. Ruelle meaningfully explores the philosophical issues raised by each, offering insights into the truly unique and creative ways mathematicians think and showing how the mathematical setting is most favorable for asking philosophical questions about meaning, beauty, and the nature of reality. The Mathematician's Brain takes you inside the world--and heads--of mathematicians. It's a journey you won't soon forget.