Forecasting Volatility in the Financial Markets

Download Forecasting Volatility in the Financial Markets PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080471420
Total Pages : 428 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Forecasting Volatility in the Financial Markets by : Stephen Satchell

Download or read book Forecasting Volatility in the Financial Markets written by Stephen Satchell and published by Elsevier. This book was released on 2011-02-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting Volatility in the Financial Markets, Third Edition assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting-edge modelling and forecasting techniques. It provides a survey of ways to measure risk and define the different models of volatility and return. Editors John Knight and Stephen Satchell have brought together an impressive array of contributors who present research from their area of specialization related to volatility forecasting. Readers with an understanding of volatility measures and risk management strategies will benefit from this collection of up-to-date chapters on the latest techniques in forecasting volatility. Chapters new to this third edition:* What good is a volatility model? Engle and Patton* Applications for portfolio variety Dan diBartolomeo* A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices Rob Cornish* Volatility modeling and forecasting in finance Xiao and Aydemir* An investigation of the relative performance of GARCH models versus simple rules in forecasting volatility Thomas A. Silvey - Leading thinkers present newest research on volatility forecasting - International authors cover a broad array of subjects related to volatility forecasting - Assumes basic knowledge of volatility, financial mathematics, and modelling

Asset Price Dynamics, Volatility, and Prediction

Download Asset Price Dynamics, Volatility, and Prediction PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400839254
Total Pages : 544 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Asset Price Dynamics, Volatility, and Prediction by : Stephen J. Taylor

Download or read book Asset Price Dynamics, Volatility, and Prediction written by Stephen J. Taylor and published by Princeton University Press. This book was released on 2011-02-11 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how current and recent market prices convey information about the probability distributions that govern future prices. Moving beyond purely theoretical models, Stephen Taylor applies methods supported by empirical research of equity and foreign exchange markets to show how daily and more frequent asset prices, and the prices of option contracts, can be used to construct and assess predictions about future prices, their volatility, and their probability distributions. Stephen Taylor provides a comprehensive introduction to the dynamic behavior of asset prices, relying on finance theory and statistical evidence. He uses stochastic processes to define mathematical models for price dynamics, but with less mathematics than in alternative texts. The key topics covered include random walk tests, trading rules, ARCH models, stochastic volatility models, high-frequency datasets, and the information that option prices imply about volatility and distributions. Asset Price Dynamics, Volatility, and Prediction is ideal for students of economics, finance, and mathematics who are studying financial econometrics, and will enable researchers to identify and apply appropriate models and methods. It will likewise be a valuable resource for quantitative analysts, fund managers, risk managers, and investors who seek realistic expectations about future asset prices and the risks to which they are exposed.

A Practical Guide to Forecasting Financial Market Volatility

Download A Practical Guide to Forecasting Financial Market Volatility PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470856157
Total Pages : 236 pages
Book Rating : 4.4/5 (78 download)

DOWNLOAD NOW!


Book Synopsis A Practical Guide to Forecasting Financial Market Volatility by : Ser-Huang Poon

Download or read book A Practical Guide to Forecasting Financial Market Volatility written by Ser-Huang Poon and published by John Wiley & Sons. This book was released on 2005-08-19 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial market volatility forecasting is one of today's most important areas of expertise for professionals and academics in investment, option pricing, and financial market regulation. While many books address financial market modelling, no single book is devoted primarily to the exploration of volatility forecasting and the practical use of forecasting models. A Practical Guide to Forecasting Financial Market Volatility provides practical guidance on this vital topic through an in-depth examination of a range of popular forecasting models. Details are provided on proven techniques for building volatility models, with guide-lines for actually using them in forecasting applications.

Machine Learning for Financial Risk Management with Python

Download Machine Learning for Financial Risk Management with Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492085200
Total Pages : 334 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Financial Risk Management with Python by : Abdullah Karasan

Download or read book Machine Learning for Financial Risk Management with Python written by Abdullah Karasan and published by "O'Reilly Media, Inc.". This book was released on 2021-12-07 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models. Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension Develop a credit risk analysis using clustering and Bayesian approaches Capture different aspects of liquidity risk with a Gaussian mixture model and Copula model Use machine learning models for fraud detection Predict stock price crash and identify its determinants using machine learning models

Financial Risk Forecasting

Download Financial Risk Forecasting PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119977118
Total Pages : 307 pages
Book Rating : 4.1/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Financial Risk Forecasting by : Jon Danielsson

Download or read book Financial Risk Forecasting written by Jon Danielsson and published by John Wiley & Sons. This book was released on 2011-04-20 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: Financial Risk Forecasting is a complete introduction to practical quantitative risk management, with a focus on market risk. Derived from the authors teaching notes and years spent training practitioners in risk management techniques, it brings together the three key disciplines of finance, statistics and modeling (programming), to provide a thorough grounding in risk management techniques. Written by renowned risk expert Jon Danielsson, the book begins with an introduction to financial markets and market prices, volatility clusters, fat tails and nonlinear dependence. It then goes on to present volatility forecasting with both univatiate and multivatiate methods, discussing the various methods used by industry, with a special focus on the GARCH family of models. The evaluation of the quality of forecasts is discussed in detail. Next, the main concepts in risk and models to forecast risk are discussed, especially volatility, value-at-risk and expected shortfall. The focus is both on risk in basic assets such as stocks and foreign exchange, but also calculations of risk in bonds and options, with analytical methods such as delta-normal VaR and duration-normal VaR and Monte Carlo simulation. The book then moves on to the evaluation of risk models with methods like backtesting, followed by a discussion on stress testing. The book concludes by focussing on the forecasting of risk in very large and uncommon events with extreme value theory and considering the underlying assumptions behind almost every risk model in practical use – that risk is exogenous – and what happens when those assumptions are violated. Every method presented brings together theoretical discussion and derivation of key equations and a discussion of issues in practical implementation. Each method is implemented in both MATLAB and R, two of the most commonly used mathematical programming languages for risk forecasting with which the reader can implement the models illustrated in the book. The book includes four appendices. The first introduces basic concepts in statistics and financial time series referred to throughout the book. The second and third introduce R and MATLAB, providing a discussion of the basic implementation of the software packages. And the final looks at the concept of maximum likelihood, especially issues in implementation and testing. The book is accompanied by a website - www.financialriskforecasting.com – which features downloadable code as used in the book.

Advances in Markov-Switching Models

Download Advances in Markov-Switching Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642511821
Total Pages : 267 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Advances in Markov-Switching Models by : James D. Hamilton

Download or read book Advances in Markov-Switching Models written by James D. Hamilton and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of state-of-the-art papers on the properties of business cycles and financial analysis. The individual contributions cover new advances in Markov-switching models with applications to business cycle research and finance. The introduction surveys the existing methods and new results of the last decade. Individual chapters study features of the U. S. and European business cycles with particular focus on the role of monetary policy, oil shocks and co movements among key variables. The short-run versus long-run consequences of an economic recession are also discussed. Another area that is featured is an extensive analysis of currency crises and the possibility of bubbles or fads in stock prices. A concluding chapter offers useful new results on testing for this kind of regime-switching behaviour. Overall, the book provides a state-of-the-art over view of new directions in methods and results for estimation and inference based on the use of Markov-switching time-series analysis. A special feature of the book is that it includes an illustration of a wide range of applications based on a common methodology. It is expected that the theme of the book will be of particular interest to the macroeconomics readers as well as econometrics professionals, scholars and graduate students. We wish to express our gratitude to the authors for their strong contributions and the reviewers for their assistance and careful attention to detail in their reports.

Volatility and Correlation

Download Volatility and Correlation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470091401
Total Pages : 864 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Volatility and Correlation by : Riccardo Rebonato

Download or read book Volatility and Correlation written by Riccardo Rebonato and published by John Wiley & Sons. This book was released on 2005-07-08 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Volatility and Correlation 2nd edition: The Perfect Hedger and the Fox, Rebonato looks at derivatives pricing from the angle of volatility and correlation. With both practical and theoretical applications, this is a thorough update of the highly successful Volatility & Correlation – with over 80% new or fully reworked material and is a must have both for practitioners and for students. The new and updated material includes a critical examination of the ‘perfect-replication’ approach to derivatives pricing, with special attention given to exotic options; a thorough analysis of the role of quadratic variation in derivatives pricing and hedging; a discussion of the informational efficiency of markets in commonly-used calibration and hedging practices. Treatment of new models including Variance Gamma, displaced diffusion, stochastic volatility for interest-rate smiles and equity/FX options. The book is split into four parts. Part I deals with a Black world without smiles, sets out the author’s ‘philosophical’ approach and covers deterministic volatility. Part II looks at smiles in equity and FX worlds. It begins with a review of relevant empirical information about smiles, and provides coverage of local-stochastic-volatility, general-stochastic-volatility, jump-diffusion and Variance-Gamma processes. Part II concludes with an important chapter that discusses if and to what extent one can dispense with an explicit specification of a model, and can directly prescribe the dynamics of the smile surface. Part III focusses on interest rates when the volatility is deterministic. Part IV extends this setting in order to account for smiles in a financially motivated and computationally tractable manner. In this final part the author deals with CEV processes, with diffusive stochastic volatility and with Markov-chain processes. Praise for the First Edition: “In this book, Dr Rebonato brings his penetrating eye to bear on option pricing and hedging.... The book is a must-read for those who already know the basics of options and are looking for an edge in applying the more sophisticated approaches that have recently been developed.” —Professor Ian Cooper, London Business School “Volatility and correlation are at the very core of all option pricing and hedging. In this book, Riccardo Rebonato presents the subject in his characteristically elegant and simple fashion...A rare combination of intellectual insight and practical common sense.” —Anthony Neuberger, London Business School

Time Series Models

Download Time Series Models PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000152944
Total Pages : 243 pages
Book Rating : 4.0/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Time Series Models by : D.R. Cox

Download or read book Time Series Models written by D.R. Cox and published by CRC Press. This book was released on 2020-11-26 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis prediction and interpolation of economic and other time series has a long history and many applications. Major new developments are taking place, driven partly by the need to analyze financial data. The five papers in this book describe those new developments from various viewpoints and are intended to be an introduction accessible to readers from a range of backgrounds. The book arises out of the second Seminaire European de Statistique (SEMSTAT) held in Oxford in December 1994. This brought together young statisticians from across Europe, and a series of introductory lectures were given on topics at the forefront of current research activity. The lectures form the basis for the five papers contained in the book. The papers by Shephard and Johansen deal respectively with time series models for volatility, i.e. variance heterogeneity, and with cointegration. Clements and Hendry analyze the nature of prediction errors. A complementary review paper by Laird gives a biometrical view of the analysis of short time series. Finally Astrup and Nielsen give a mathematical introduction to the study of option pricing. Whilst the book draws its primary motivation from financial series and from multivariate econometric modelling, the applications are potentially much broader.

Handbook of Financial Time Series

Download Handbook of Financial Time Series PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540712976
Total Pages : 1045 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Financial Time Series by : Torben Gustav Andersen

Download or read book Handbook of Financial Time Series written by Torben Gustav Andersen and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.

Model-Free Prediction and Regression

Download Model-Free Prediction and Regression PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319213474
Total Pages : 256 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Model-Free Prediction and Regression by : Dimitris N. Politis

Download or read book Model-Free Prediction and Regression written by Dimitris N. Politis and published by Springer. This book was released on 2015-11-13 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Model-Free Prediction Principle expounded upon in this monograph is based on the simple notion of transforming a complex dataset to one that is easier to work with, e.g., i.i.d. or Gaussian. As such, it restores the emphasis on observable quantities, i.e., current and future data, as opposed to unobservable model parameters and estimates thereof, and yields optimal predictors in diverse settings such as regression and time series. Furthermore, the Model-Free Bootstrap takes us beyond point prediction in order to construct frequentist prediction intervals without resort to unrealistic assumptions such as normality. Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful computing in the late 1970s, computer-intensive methods such as the bootstrap and cross-validation freed practitioners from the limitations of parametric models, and paved the way towards the `big data' era of the 21st century. Nonetheless, there is a further step one may take, i.e., going beyond even nonparametric models; this is where the Model-Free Prediction Principle is useful. Interestingly, being able to predict a response variable Y associated with a regressor variable X taking on any possible value seems to inadvertently also achieve the main goal of modeling, i.e., trying to describe how Y depends on X. Hence, as prediction can be treated as a by-product of model-fitting, key estimation problems can be addressed as a by-product of being able to perform prediction. In other words, a practitioner can use Model-Free Prediction ideas in order to additionally obtain point estimates and confidence intervals for relevant parameters leading to an alternative, transformation-based approach to statistical inference.

Forecasting in the Presence of Structural Breaks and Model Uncertainty

Download Forecasting in the Presence of Structural Breaks and Model Uncertainty PDF Online Free

Author :
Publisher : Emerald Group Publishing
ISBN 13 : 1849505403
Total Pages : 691 pages
Book Rating : 4.8/5 (495 download)

DOWNLOAD NOW!


Book Synopsis Forecasting in the Presence of Structural Breaks and Model Uncertainty by : David E. Rapach

Download or read book Forecasting in the Presence of Structural Breaks and Model Uncertainty written by David E. Rapach and published by Emerald Group Publishing. This book was released on 2008-02-29 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting in the presence of structural breaks and model uncertainty are active areas of research with implications for practical problems in forecasting. This book addresses forecasting variables from both Macroeconomics and Finance, and considers various methods of dealing with model instability and model uncertainty when forming forecasts.

Options as a Strategic Investment

Download Options as a Strategic Investment PDF Online Free

Author :
Publisher : Penguin
ISBN 13 : 9780735201972
Total Pages : 1034 pages
Book Rating : 4.2/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Options as a Strategic Investment by : Lawrence G. McMillan

Download or read book Options as a Strategic Investment written by Lawrence G. McMillan and published by Penguin. This book was released on 2002 with total page 1034 pages. Available in PDF, EPUB and Kindle. Book excerpt: A best-selling guide giving serious investors hundreds of market-tested strategies, to maximise the earnings potential of their portfolio while reducing risk.

Volatility and Time Series Econometrics

Download Volatility and Time Series Econometrics PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199549494
Total Pages : 432 pages
Book Rating : 4.1/5 (995 download)

DOWNLOAD NOW!


Book Synopsis Volatility and Time Series Econometrics by : Mark Watson

Download or read book Volatility and Time Series Econometrics written by Mark Watson and published by Oxford University Press. This book was released on 2010-02-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A volume that celebrates and develops the work of Nobel Laureate Robert Engle, it includes original contributions from some of the world's leading econometricians that further Engle's work in time series economics

Handbook of Volatility Models and Their Applications

Download Handbook of Volatility Models and Their Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118272056
Total Pages : 566 pages
Book Rating : 4.1/5 (182 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Volatility Models and Their Applications by : Luc Bauwens

Download or read book Handbook of Volatility Models and Their Applications written by Luc Bauwens and published by John Wiley & Sons. This book was released on 2012-03-22 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.

Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis

Download Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461416531
Total Pages : 582 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis by : Xiaohong Chen

Download or read book Recent Advances and Future Directions in Causality, Prediction, and Specification Analysis written by Xiaohong Chen and published by Springer Science & Business Media. This book was released on 2012-08-01 with total page 582 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a collection of articles that present the most recent cutting edge results on specification and estimation of economic models written by a number of the world’s foremost leaders in the fields of theoretical and methodological econometrics. Recent advances in asymptotic approximation theory, including the use of higher order asymptotics for things like estimator bias correction, and the use of various expansion and other theoretical tools for the development of bootstrap techniques designed for implementation when carrying out inference are at the forefront of theoretical development in the field of econometrics. One important feature of these advances in the theory of econometrics is that they are being seamlessly and almost immediately incorporated into the “empirical toolbox” that applied practitioners use when actually constructing models using data, for the purposes of both prediction and policy analysis and the more theoretically targeted chapters in the book will discuss these developments. Turning now to empirical methodology, chapters on prediction methodology will focus on macroeconomic and financial applications, such as the construction of diffusion index models for forecasting with very large numbers of variables, and the construction of data samples that result in optimal predictive accuracy tests when comparing alternative prediction models. Chapters carefully outline how applied practitioners can correctly implement the latest theoretical refinements in model specification in order to “build” the best models using large-scale and traditional datasets, making the book of interest to a broad readership of economists from theoretical econometricians to applied economic practitioners.

The Oxford Handbook of Economic Forecasting

Download The Oxford Handbook of Economic Forecasting PDF Online Free

Author :
Publisher : OUP USA
ISBN 13 : 0195398645
Total Pages : 732 pages
Book Rating : 4.1/5 (953 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Handbook of Economic Forecasting by : Michael P. Clements

Download or read book The Oxford Handbook of Economic Forecasting written by Michael P. Clements and published by OUP USA. This book was released on 2011-07-08 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.

Intelligent Data Engineering and Automated Learning - IDEAL 2002

Download Intelligent Data Engineering and Automated Learning - IDEAL 2002 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540456759
Total Pages : 612 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Intelligent Data Engineering and Automated Learning - IDEAL 2002 by : Hujun Yin

Download or read book Intelligent Data Engineering and Automated Learning - IDEAL 2002 written by Hujun Yin and published by Springer. This book was released on 2003-08-02 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Third International Conference on Intelligent Data Engineering and Automated Learning, IDEAL 2002, held in Manchester, UK in August 2002. The 89 revised papers presented were carefully reviewed and selected from more than 150 submissions. The book offers topical sections on data mining, knowledge engineering, text and document processing, internet applications, agent technology, autonomous mining, financial engineering, bioinformatics, learning systems, and pattern recognition.