Vectors, Matrices and Geometry

Download Vectors, Matrices and Geometry PDF Online Free

Author :
Publisher : Hong Kong University Press
ISBN 13 : 9622093604
Total Pages : 357 pages
Book Rating : 4.6/5 (22 download)

DOWNLOAD NOW!


Book Synopsis Vectors, Matrices and Geometry by : K.T. Leung

Download or read book Vectors, Matrices and Geometry written by K.T. Leung and published by Hong Kong University Press. This book was released on 1994-08-01 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the last volume of a three-book series written for Sixth Form students and first-year undergraduates. It introduces the important concepts of finite-dimensional vector spaces through the careful study of Euclidean geometry. In turn, methods of linear algebra are then used in the study of coordinate transformations through which a complete classification of conic sections and quadric surfaces is obtained. The book concludes with a detailed treatment of linear equations in n variables in the language of vectors and matrices. Illustrative examples are included in the main text and numerous exercises are given in each section. The other books in the series are Fundamental Concepts of Mathematics (published 1988) and Polynomials and Equations (published 1992).

Vector Geometry

Download Vector Geometry PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486321045
Total Pages : 194 pages
Book Rating : 4.4/5 (863 download)

DOWNLOAD NOW!


Book Synopsis Vector Geometry by : Gilbert de B. Robinson

Download or read book Vector Geometry written by Gilbert de B. Robinson and published by Courier Corporation. This book was released on 2013-10-10 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise undergraduate-level text by a prominent mathematician explores the relationship between algebra and geometry. An elementary course in plane geometry is the sole requirement. Includes answers to exercises. 1962 edition.

A Vector Space Approach to Geometry

Download A Vector Space Approach to Geometry PDF Online Free

Author :
Publisher : Courier Dover Publications
ISBN 13 : 0486835391
Total Pages : 417 pages
Book Rating : 4.4/5 (868 download)

DOWNLOAD NOW!


Book Synopsis A Vector Space Approach to Geometry by : Melvin Hausner

Download or read book A Vector Space Approach to Geometry written by Melvin Hausner and published by Courier Dover Publications. This book was released on 2018-10-17 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fascinating exploration of the correlation between geometry and linear algebra, this text also offers elementary explanations of the role of geometry in other branches of math and science. 1965 edition.

Analytic Geometry with an Introduction to Vectors and Matrices

Download Analytic Geometry with an Introduction to Vectors and Matrices PDF Online Free

Author :
Publisher : New York : J. Wiley & Sons
ISBN 13 :
Total Pages : 320 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Analytic Geometry with an Introduction to Vectors and Matrices by : David Carruthers Murdoch

Download or read book Analytic Geometry with an Introduction to Vectors and Matrices written by David Carruthers Murdoch and published by New York : J. Wiley & Sons. This book was released on 1966 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geometric Multiplication of Vectors

Download Geometric Multiplication of Vectors PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030017567
Total Pages : 258 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Geometric Multiplication of Vectors by : Miroslav Josipović

Download or read book Geometric Multiplication of Vectors written by Miroslav Josipović and published by Springer Nature. This book was released on 2019-11-22 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.

Linear Algebra Through Geometry

Download Linear Algebra Through Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461243904
Total Pages : 316 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra Through Geometry by : Thomas Banchoff

Download or read book Linear Algebra Through Geometry written by Thomas Banchoff and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the concepts of linear algebra through the careful study of two and three-dimensional Euclidean geometry. This approach makes it possible to start with vectors, linear transformations, and matrices in the context of familiar plane geometry and to move directly to topics such as dot products, determinants, eigenvalues, and quadratic forms. The later chapters deal with n-dimensional Euclidean space and other finite-dimensional vector space.

Vectors and Matrices for Geometric and 3D Modeling

Download Vectors and Matrices for Geometric and 3D Modeling PDF Online Free

Author :
Publisher : Industrial Press
ISBN 13 : 9780831136550
Total Pages : 350 pages
Book Rating : 4.1/5 (365 download)

DOWNLOAD NOW!


Book Synopsis Vectors and Matrices for Geometric and 3D Modeling by : Michael Mortenson

Download or read book Vectors and Matrices for Geometric and 3D Modeling written by Michael Mortenson and published by Industrial Press. This book was released on 2020-04-15 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Introduction to Applied Linear Algebra

Download Introduction to Applied Linear Algebra PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316518965
Total Pages : 477 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Applied Linear Algebra by : Stephen Boyd

Download or read book Introduction to Applied Linear Algebra written by Stephen Boyd and published by Cambridge University Press. This book was released on 2018-06-07 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: A groundbreaking introduction to vectors, matrices, and least squares for engineering applications, offering a wealth of practical examples.

A Mathematical Primer for Social Statistics

Download A Mathematical Primer for Social Statistics PDF Online Free

Author :
Publisher : SAGE Publications
ISBN 13 : 1071833243
Total Pages : 199 pages
Book Rating : 4.0/5 (718 download)

DOWNLOAD NOW!


Book Synopsis A Mathematical Primer for Social Statistics by : John Fox

Download or read book A Mathematical Primer for Social Statistics written by John Fox and published by SAGE Publications. This book was released on 2021-01-11 with total page 199 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Mathematical Primer for Social Statistics, Second Edition presents mathematics central to learning and understanding statistical methods beyond the introductory level: the basic "language" of matrices and linear algebra and its visual representation, vector geometry; differential and integral calculus; probability theory; common probability distributions; statistical estimation and inference, including likelihood-based and Bayesian methods. The volume concludes by applying mathematical concepts and operations to a familiar case, linear least-squares regression. The Second Edition pays more attention to visualization, including the elliptical geometry of quadratic forms and its application to statistics. It also covers some new topics, such as an introduction to Markov-Chain Monte Carlo methods, which are important in modern Bayesian statistics. A companion website includes materials that enable readers to use the R statistical computing environment to reproduce and explore computations and visualizations presented in the text. The book is an excellent companion to a "math camp" or a course designed to provide foundational mathematics needed to understand relatively advanced statistical methods.

Introduction to Matrices and Vectors

Download Introduction to Matrices and Vectors PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 0486143708
Total Pages : 198 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Matrices and Vectors by : Jacob T. Schwartz

Download or read book Introduction to Matrices and Vectors written by Jacob T. Schwartz and published by Courier Corporation. This book was released on 2012-05-23 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Realizing that matrices can be a confusing topic for the beginner, the author of this undergraduate text has made things as clear as possible by focusing on problem solving, rather than elaborate proofs. He begins with the basics, offering students a solid foundation for the later chapters on using special matrices to solve problems.The first three chapters present the basics of matrices, including addition, multiplication, and division, and give solid practice in the areas of matrix manipulation where the laws of algebra do not apply. In later chapters the author introduces vectors and shows how to use vectors and matrices to solve systems of linear equations. He also covers special matrices — including complex numbers, quaternion matrices, and matrices with complex entries — and transpose matrices; the trace of a matrix; the cross product of matrices; eigenvalues and eigenvectors; and infinite series of matrices. Exercises at the end of each section give students further practice in problem solving. Prerequisites include a background in algebra, and in the later chapters, a knowledge of solid geometry. The book was designed as an introductory text for college freshmen and sophomores, but selected chapters can also be used to supplement advanced high school classes. Professionals who need a better understanding or review of the subject will also benefit from this concise guide.

Linear Algebra

Download Linear Algebra PDF Online Free

Author :
Publisher : Macmillan
ISBN 13 : 1429215216
Total Pages : 394 pages
Book Rating : 4.4/5 (292 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra by : Theodore Shifrin

Download or read book Linear Algebra written by Theodore Shifrin and published by Macmillan. This book was released on 2010-07-30 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Algebra: A Geometric Approach, Second Edition, presents the standard computational aspects of linear algebra and includes a variety of intriguing interesting applications that would be interesting to motivate science and engineering students, as well as help mathematics students make the transition to more abstract advanced courses. The text guides students on how to think about mathematical concepts and write rigorous mathematical arguments.

Linear Algebra and Analytic Geometry for Physical Sciences

Download Linear Algebra and Analytic Geometry for Physical Sciences PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319783610
Total Pages : 348 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra and Analytic Geometry for Physical Sciences by : Giovanni Landi

Download or read book Linear Algebra and Analytic Geometry for Physical Sciences written by Giovanni Landi and published by Springer. This book was released on 2018-05-12 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained introduction to finite dimensional vector spaces, matrices, systems of linear equations, spectral analysis on euclidean and hermitian spaces, affine euclidean geometry, quadratic forms and conic sections. The mathematical formalism is motivated and introduced by problems from physics, notably mechanics (including celestial) and electro-magnetism, with more than two hundreds examples and solved exercises.Topics include: The group of orthogonal transformations on euclidean spaces, in particular rotations, with Euler angles and angular velocity. The rigid body with its inertia matrix. The unitary group. Lie algebras and exponential map. The Dirac’s bra-ket formalism. Spectral theory for self-adjoint endomorphisms on euclidean and hermitian spaces. The Minkowski spacetime from special relativity and the Maxwell equations. Conic sections with the use of eccentricity and Keplerian motions. An appendix collects basic algebraic notions like group, ring and field; and complex numbers and integers modulo a prime number.The book will be useful to students taking a physics or engineer degree for a basic education as well as for students who wish to be competent in the subject and who may want to pursue a post-graduate qualification.

Introduction to Linear and Matrix Algebra

Download Introduction to Linear and Matrix Algebra PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030528111
Total Pages : 482 pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Linear and Matrix Algebra by : Nathaniel Johnston

Download or read book Introduction to Linear and Matrix Algebra written by Nathaniel Johnston and published by Springer Nature. This book was released on 2021-05-19 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.

Clifford Algebra to Geometric Calculus

Download Clifford Algebra to Geometric Calculus PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9789027725615
Total Pages : 340 pages
Book Rating : 4.7/5 (256 download)

DOWNLOAD NOW!


Book Synopsis Clifford Algebra to Geometric Calculus by : David Hestenes

Download or read book Clifford Algebra to Geometric Calculus written by David Hestenes and published by Springer Science & Business Media. This book was released on 1984 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

Linear Algebra and Geometry

Download Linear Algebra and Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470443503
Total Pages : 575 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Linear Algebra and Geometry by : Al Cuoco

Download or read book Linear Algebra and Geometry written by Al Cuoco and published by American Mathematical Soc.. This book was released on 2019-04-10 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear Algebra and Geometry is organized around carefully sequenced problems that help students build both the tools and the habits that provide a solid basis for further study in mathematics. Requiring only high school algebra, it uses elementary geometry to build the beautiful edifice of results and methods that make linear algebra such an important field. The materials in Linear Algebra and Geometry have been used, field tested, and refined for over two decades. It is aimed at preservice and practicing high school mathematics teachers and advanced high school students looking for an addition to or replacement for calculus. Secondary teachers will find the emphasis on developing effective habits of mind especially helpful. The book is written in a friendly, approachable voice and contains nearly a thousand problems. An instructor's manual for this title is available electronically to those instructors who have adopted the textbook for classroom use. Please send email to [email protected] for more information.

Geometric Algebra for Electrical Engineers

Download Geometric Algebra for Electrical Engineers PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781987598971
Total Pages : 282 pages
Book Rating : 4.5/5 (989 download)

DOWNLOAD NOW!


Book Synopsis Geometric Algebra for Electrical Engineers by : Peeter Joot

Download or read book Geometric Algebra for Electrical Engineers written by Peeter Joot and published by Createspace Independent Publishing Platform. This book was released on 2019-01-29 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the fundamentals of geometric algebra and calculus, and applies those tools to the study of electromagnetism. Geometric algebra provides a structure that can represent oriented point, line, plane, and volume segments. Vectors, which can be thought of as a representation of oriented line segments, are generalized to multivectors. A full fledged, but non-commutative (i.e. order matters) mul- tiplication operation will be defined for products of vectors. Namely, the square of a vector is the square of its length. This simple rule, along with a requirement that we can sum vectors and their products, essentially defines geometric algebra. Such sums of scalars, vectors and vector products are called multivectors. The reader will see that familiar concepts such as the dot and cross product are related to a more general vector product, and that algebraic structures such as complex numbers can be represented as multivectors. We will be able to utilize generalized complex exponentials to do rotations in arbitrarily oriented planes in space, and will find that simple geometric algebra representations of many geometric transformations are possible. Generalizations of the divergence and Stokes' theorems are required once we choose to work with multivector functions. There is an unfortunate learning curve required to express this gen- eralization, but once overcome, we will be left with a single powerful multivector integration theorem that has no analogue in conventional vector calculus. This fundamental theorem of geo- metric calculus incorporates Green's (area) theorem, the divergence theorem, Stokes' theorems, and complex residue calculus. Multivector calculus also provides the opportunity to define a few unique and powerful Green's functions that almost trivialize solutions of Maxwell's equations. Instead of working separately with electric and magnetic fields, we will work with a hybrid multivector field that includes both electric and magnetic field contributions, and with a mul- tivector current that includes both charge and current densities. The natural representation of Maxwell's equations is a single multivector equation that is easier to solve and manipulate then the conventional mess of divergence and curl equations are familiar to the reader. This book is aimed at graduate or advanced undergraduates in electrical engineering or physics. While all the fundamental results of electromagnetism are derived from Maxwell's equations, there will be no attempt to motivate Maxwell's equations themselves, so existing familiarity with the subject is desirable.

Algebra and Geometry with Python

Download Algebra and Geometry with Python PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030615413
Total Pages : 429 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Algebra and Geometry with Python by : Sergei Kurgalin

Download or read book Algebra and Geometry with Python written by Sergei Kurgalin and published by Springer Nature. This book was released on 2021-01-18 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book teaches algebra and geometry. The authors dedicate chapters to the key issues of matrices, linear equations, matrix algorithms, vector spaces, lines, planes, second-order curves, and elliptic curves. The text is supported throughout with problems, and the authors have included source code in Python in the book. The book is suitable for advanced undergraduate and graduate students in computer science.