Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Uncountably Categorical Theories
Download Uncountably Categorical Theories full books in PDF, epub, and Kindle. Read online Uncountably Categorical Theories ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Uncountably Categorical Theories by : Boris Zilber
Download or read book Uncountably Categorical Theories written by Boris Zilber and published by American Mathematical Soc.. This book was released on with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 1970s saw the appearance and development in categoricity theory of a tendency to focus on the study and description of uncountably categorical theories in various special classes defined by natural algebraic or syntactic conditions. There have thus been studies of uncountably categorical theories of groups and rings, theories of a one-place function, universal theories of semigroups, quasivarieties categorical in infinite powers, and Horn theories. In Uncountably Categorical Theories , this research area is referred to as the special classification theory of categoricity. Zilber's goal is to develop a structural theory of categoricity, using methods and results of the special classification theory, and to construct on this basis a foundation for a general classification theory of categoricity, that is, a theory aimed at describing large classes of uncountably categorical structures not restricted by any syntactic or algebraic conditions.
Book Synopsis On the Countable Models of [omega] ̃1-categorical Theories in Admissible Languages by : Henry Andrew Kierstead
Download or read book On the Countable Models of [omega] ̃1-categorical Theories in Admissible Languages written by Henry Andrew Kierstead and published by . This book was released on 1979 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Model Theory and Applications by : O.V. Belegradek
Download or read book Model Theory and Applications written by O.V. Belegradek and published by American Mathematical Soc.. This book was released on 1999 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a collection of papers on model theory and its applications. The longest paper, "Model Theory of Unitriangular Groups" by O. V. Belegradek, forms a subtle general theory behind Mal'tsev's famous correspondence between rings and groups. This is the first published paper on the topic. Given the present model-theoretic interest in algebraic groups, Belegradek's work is of particular interest to logicians and algebraists. The rest of the collection consists of papers on various questions of model theory, mainly on stability theory. Contributors are leading Russian researchers in the field.
Book Synopsis Computability Theory and Its Applications by : Peter Cholak
Download or read book Computability Theory and Its Applications written by Peter Cholak and published by American Mathematical Soc.. This book was released on 2000 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of articles presents a snapshot of the status of computability theory at the end of the millennium and a list of fruitful directions for future research. The papers represent the works of experts in the field who were invited speakers at the AMS-IMS-SIAM 1999 Summer Conference on Computability Theory and Applications, which focused on open problems in computability theory and on some related areas in which the ideas, methods, and/or results of computability theory play a role. Some presentations are narrowly focused; others cover a wider area. Topics included from "pure" computability theory are the computably enumerable degrees (M. Lerman), the computably enumerable sets (P. Cholak, R. Soare), definability issues in the c.e. and Turing degrees (A. Nies, R. Shore) and other degree structures (M. Arslanov, S. Badaev and S. Goncharov, P. Odifreddi, A. Sorbi). The topics involving relations between computability and other areas of logic and mathematics are reverse mathematics and proof theory (D. Cenzer and C. Jockusch, C. Chong and Y. Yang, H. Friedman and S. Simpson), set theory (R. Dougherty and A. Kechris, M. Groszek, T. Slaman) and computable mathematics and model theory (K. Ambos-Spies and A. Kucera, R. Downey and J. Remmel, S. Goncharov and B. Khoussainov, J. Knight, M. Peretyat'kin, A. Shlapentokh).
Book Synopsis Essential Stability Theory by : Steven Buechler
Download or read book Essential Stability Theory written by Steven Buechler and published by Cambridge University Press. This book was released on 2017-03-02 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Stability theory was introduced and matured in the 1960s and 1970s. Today stability theory influences and is influenced by number theory, algebraic group theory, Riemann surfaces, and representation theory of modules. There is little model theory today that does not involve the methods of stability theory. In this volume, the fourth publication in the Perspectives in Logic series, Steven Buechler bridges the gap between a first-year graduate logic course and research papers in stability theory. The book prepares the student for research in any of today's branches of stability theory, and gives an introduction to classification theory with an exposition of Morley's Categoricity Theorem.
Book Synopsis Tits Buildings and the Model Theory of Groups by : Katrin Tent
Download or read book Tits Buildings and the Model Theory of Groups written by Katrin Tent and published by Cambridge University Press. This book was released on 2002-01-03 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to buildings and their geometries with emphasis on model theoretic constructions, covering recent developments.
Download or read book Model Theory written by Wilfrid Hodges and published by Cambridge University Press. This book was released on 1993-03-11 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.
Book Synopsis A First Course in Logic by : Shawn Hedman
Download or read book A First Course in Logic written by Shawn Hedman and published by OUP Oxford. This book was released on 2004-07-08 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ability to reason and think in a logical manner forms the basis of learning for most mathematics, computer science, philosophy and logic students. Based on the author's teaching notes at the University of Maryland and aimed at a broad audience, this text covers the fundamental topics in classical logic in an extremely clear, thorough and accurate style that is accessible to all the above. Covering propositional logic, first-order logic, and second-order logic, as well as proof theory, computability theory, and model theory, the text also contains numerous carefully graded exercises and is ideal for a first or refresher course.
Book Synopsis A Course in Model Theory by : Katrin Tent
Download or read book A Course in Model Theory written by Katrin Tent and published by Cambridge University Press. This book was released on 2012-03-08 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concise introduction to current topics in model theory, including simple and stable theories.
Book Synopsis Effective Mathematics of the Uncountable by : Noam Greenberg
Download or read book Effective Mathematics of the Uncountable written by Noam Greenberg and published by Cambridge University Press. This book was released on 2013-10-31 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to eight major approaches to computation on uncountable mathematical domains.
Book Synopsis Classification of countable models of complete theories. Рart 1 by : Sergey Sudoplatov
Download or read book Classification of countable models of complete theories. Рart 1 written by Sergey Sudoplatov and published by Litres. This book was released on 2022-01-29 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is the first part of the monograph “Classification of countable models of complete theories” consisting of two parts. In the monograph, a classification of countable models of complete theories with respect to two basic characteristics (Rudin–Keisler preorders and distribution functions for numbers of limit models) is presented and applied to the most important classes of countable theories such as the class of Ehrenfeucht theories (i. e., complete first-order theories with finitely many but more than one pairwise non-isomorphic countable models), the class of small theories (i. e., complete first-order theories with countably many types), and the class of countable first-order theories with continuum many types. For realizations of basic characteristics of countable complete theories, syntactic generic constructions, generalizing the Jonsson–Fraïssé construction and the Hrushovski construction, are presented. Using these constructions a solution of the Goncharov–Millar problem (on the existence of Ehrenfeucht theories with countable models which are not almost homogeneous) is described. Modifying the Hrushovski–Herwig generic construction, a solution of the Lachlan problem on the existence of stable Ehrenfeucht theories is shown. In the first part, a characterization of Ehrenfeuchtness, properties of Ehrenfeucht theories, generic constructions, and algebras for distributions of binary semi-isolating formulas of a complete theory are considered.The book is intended for specialists interested in Mathematical Logic.
Book Synopsis Model Theory, Algebra, and Geometry by : Deirdre Haskell
Download or read book Model Theory, Algebra, and Geometry written by Deirdre Haskell and published by Cambridge University Press. This book was released on 2000-07-03 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. These applications range from a proof of the rationality of certain Poincare series associated to varieties over p-adic fields, to a proof of the Mordell-Lang conjecture for function fields in positive characteristic. In some cases (such as the latter) it is the most abstract aspects of model theory which are relevant. This book, originally published in 2000, arising from a series of introductory lectures for graduate students, provides the necessary background to understanding both the model theory and the mathematics behind these applications. The book is unique in that the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations) is covered and diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) are introduced and discussed, all by leading experts in their fields.
Book Synopsis Philosophy and Model Theory by : Tim Button
Download or read book Philosophy and Model Theory written by Tim Button and published by Oxford University Press. This book was released on 2018 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model theory is used in every theoretical branch of analytic philosophy: in philosophy of mathematics, in philosophy of science, in philosophy of language, in philosophical logic, and in metaphysics. But these wide-ranging uses of model theory have created a highly fragmented literature. On the one hand, many philosophically significant results are found only in mathematics textbooks: these are aimed squarely at mathematicians; they typically presuppose that the reader has a serious background in mathematics; and little clue is given as to their philosophical significance. On the other hand, the philosophical applications of these results are scattered across disconnected pockets of papers. The first aim of this book, then, is to explore the philosophical uses of model theory, focusing on the central topics of reference, realism, and doxology. Its second aim is to address important questions in the philosophy of model theory, such as: sameness of theories and structure, the boundaries of logic, and the classification of mathematical structures. Philosophy and Model Theory will be accessible to anyone who has completed an introductory logic course. It does not assume that readers have encountered model theory before, but starts right at the beginning, discussing philosophical issues that arise even with conceptually basic model theory. Moreover, the book is largely self-contained: model-theoretic notions are defined as and when they are needed for the philosophical discussion, and many of the most philosophically significant results are given accessible proofs.
Book Synopsis Advances in Algebra and Model Theory by : M Droste
Download or read book Advances in Algebra and Model Theory written by M Droste and published by CRC Press. This book was released on 2019-08-16 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains 25 surveys in algebra and model theory, all written by leading experts in the field. The surveys are based around talks given at conferences held in Essen, 1994, and Dresden, 1995. Each contribution is written in such a way as to highlight the ideas that were discussed at the conferences, and also to stimulate open research problems in a form accessible to the whole mathematical community. The topics include field and ring theory as well as groups, ordered algebraic structure and their relationship to model theory. Several papers deal with infinite permutation groups, abelian groups, modules and their relatives and representations. Model theoretic aspects include quantifier elimination in skew fields, Hilbert's 17th problem, (aleph-0)-categorical structures and Boolean algebras. Moreover symmetry questions and automorphism groups of orders are covered. This work contains 25 surveys in algebra and model theory, each is written in such a way as to highlight the ideas that were discussed at Conferences, and also to stimulate open research problems in a form accessible to the whole mathematical community.
Book Synopsis Zariski Geometries by : Boris Zilber
Download or read book Zariski Geometries written by Boris Zilber and published by Cambridge University Press. This book was released on 2010-02-04 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents methods and results from the theory of Zariski structures and discusses their applications in geometry as well as various other mathematical fields. Beginning with a crash course in model theory, this book will suit not only model theorists but also readers with a more classical geometric background.
Book Synopsis Essential Stability Theory by : Steven Buechler
Download or read book Essential Stability Theory written by Steven Buechler and published by Cambridge University Press. This book was released on 2017-03-02 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. Stability theory was introduced and matured in the 1960s and 1970s. Today stability theory influences and is influenced by number theory, algebraic group theory, Riemann surfaces, and representation theory of modules. There is little model theory today that does not involve the methods of stability theory. In this volume, the fourth publication in the Perspectives in Logic series, Steven Buechler bridges the gap between a first-year graduate logic course and research papers in stability theory. The book prepares the student for research in any of today's branches of stability theory, and gives an introduction to classification theory with an exposition of Morley's Categoricity Theorem.
Book Synopsis The Development of Modern Logic by : Leila Haaparanta
Download or read book The Development of Modern Logic written by Leila Haaparanta and published by Oxford University Press. This book was released on 2009-06-18 with total page 1005 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume presents a comprehensive history of modern logic from the Middle Ages through the end of the twentieth century. In addition to a history of symbolic logic, the contributors also examine developments in the philosophy of logic and philosophical logic in modern times. The book begins with chapters on late medieval developments and logic and philosophy of logic from Humanism to Kant. The following chapters focus on the emergence of symbolic logic with special emphasis on the relations between logic and mathematics, on the one hand, and on logic and philosophy, on the other. This discussion is completed by a chapter on the themes of judgment and inference from 1837-1936. The volume contains a section on the development of mathematical logic from 1900-1935, followed by a section on main trends in mathematical logic after the 1930s. The volume goes on to discuss modal logic from Kant till the late twentieth century, and logic and semantics in the twentieth century; the philosophy of alternative logics; the philosophical aspects of inductive logic; the relations between logic and linguistics in the twentieth century; the relationship between logic and artificial intelligence; and ends with a presentation of the main schools of Indian logic. The Development of Modern Logic includes many prominent philosophers from around the world who work in the philosophy and history of mathematics and logic, who not only survey developments in a given period or area but also seek to make new contributions to contemporary research in the field. It is the first volume to discuss the field with this breadth of coverage and depth, and will appeal to scholars and students of logic and its philosophy.