Type Theory and Formal Proof

Download Type Theory and Formal Proof PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316061086
Total Pages : 465 pages
Book Rating : 4.3/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Type Theory and Formal Proof by : Rob Nederpelt

Download or read book Type Theory and Formal Proof written by Rob Nederpelt and published by Cambridge University Press. This book was released on 2014-11-06 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: Type theory is a fast-evolving field at the crossroads of logic, computer science and mathematics. This gentle step-by-step introduction is ideal for graduate students and researchers who need to understand the ins and outs of the mathematical machinery, the role of logical rules therein, the essential contribution of definitions and the decisive nature of well-structured proofs. The authors begin with untyped lambda calculus and proceed to several fundamental type systems, including the well-known and powerful Calculus of Constructions. The book also covers the essence of proof checking and proof development, and the use of dependent type theory to formalise mathematics. The only prerequisite is a basic knowledge of undergraduate mathematics. Carefully chosen examples illustrate the theory throughout. Each chapter ends with a summary of the content, some historical context, suggestions for further reading and a selection of exercises to help readers familiarise themselves with the material.

Type Theory and Formal Proof

Download Type Theory and Formal Proof PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 110703650X
Total Pages : 465 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Type Theory and Formal Proof by : Rob Nederpelt

Download or read book Type Theory and Formal Proof written by Rob Nederpelt and published by Cambridge University Press. This book was released on 2014-11-06 with total page 465 pages. Available in PDF, EPUB and Kindle. Book excerpt: A gentle introduction for graduate students and researchers in the art of formalizing mathematics on the basis of type theory.

An Introduction to Mathematical Logic and Type Theory

Download An Introduction to Mathematical Logic and Type Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9781402007637
Total Pages : 416 pages
Book Rating : 4.0/5 (76 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Mathematical Logic and Type Theory by : Peter B. Andrews

Download or read book An Introduction to Mathematical Logic and Type Theory written by Peter B. Andrews and published by Springer Science & Business Media. This book was released on 2002-07-31 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

Homotopy Type Theory: Univalent Foundations of Mathematics

Download Homotopy Type Theory: Univalent Foundations of Mathematics PDF Online Free

Author :
Publisher : Univalent Foundations
ISBN 13 :
Total Pages : 484 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Homotopy Type Theory: Univalent Foundations of Mathematics by :

Download or read book Homotopy Type Theory: Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Intuitionistic Type Theory

Download Intuitionistic Type Theory PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 116 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Intuitionistic Type Theory by : Per Martin-Löf

Download or read book Intuitionistic Type Theory written by Per Martin-Löf and published by . This book was released on 1984 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Programming in Martin-Löf's Type Theory

Download Programming in Martin-Löf's Type Theory PDF Online Free

Author :
Publisher : Oxford University Press, USA
ISBN 13 :
Total Pages : 240 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Programming in Martin-Löf's Type Theory by : Bengt Nordström

Download or read book Programming in Martin-Löf's Type Theory written by Bengt Nordström and published by Oxford University Press, USA. This book was released on 1990 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, several formalisms for program construction have appeared. One such formalism is the type theory developed by Per Martin-Löf. Well suited as a theory for program construction, it makes possible the expression of both specifications and programs within the same formalism. Furthermore, the proof rules can be used to derive a correct program from a specification as well as to verify that a given program has a certain property. This book contains a thorough introduction to type theory, with information on polymorphic sets, subsets, monomorphic sets, and a full set of helpful examples.

An Introduction to Proof Theory

Download An Introduction to Proof Theory PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0192649299
Total Pages : 336 pages
Book Rating : 4.1/5 (926 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Proof Theory by : Paolo Mancosu

Download or read book An Introduction to Proof Theory written by Paolo Mancosu and published by Oxford University Press. This book was released on 2021-08-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: An Introduction to Proof Theory provides an accessible introduction to the theory of proofs, with details of proofs worked out and examples and exercises to aid the reader's understanding. It also serves as a companion to reading the original pathbreaking articles by Gerhard Gentzen. The first half covers topics in structural proof theory, including the Gödel-Gentzen translation of classical into intuitionistic logic (and arithmetic), natural deduction and the normalization theorems (for both NJ and NK), the sequent calculus, including cut-elimination and mid-sequent theorems, and various applications of these results. The second half examines ordinal proof theory, specifically Gentzen's consistency proof for first-order Peano Arithmetic. The theory of ordinal notations and other elements of ordinal theory are developed from scratch, and no knowledge of set theory is presumed. The proof methods needed to establish proof-theoretic results, especially proof by induction, are introduced in stages throughout the text. Mancosu, Galvan, and Zach's introduction will provide a solid foundation for those looking to understand this central area of mathematical logic and the philosophy of mathematics.

Basic Simple Type Theory

Download Basic Simple Type Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521465184
Total Pages : 200 pages
Book Rating : 4.5/5 (214 download)

DOWNLOAD NOW!


Book Synopsis Basic Simple Type Theory by : J. Roger Hindley

Download or read book Basic Simple Type Theory written by J. Roger Hindley and published by Cambridge University Press. This book was released on 1997 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Type theory is one of the most important tools in the design of higher-level programming languages, such as ML. This book introduces and teaches its techniques by focusing on one particularly neat system and studying it in detail. By concentrating on the principles that make the theory work in practice, the author covers all the key ideas without getting involved in the complications of more advanced systems. This book takes a type-assignment approach to type theory, and the system considered is the simplest polymorphic one. The author covers all the basic ideas, including the system's relation to propositional logic, and gives a careful treatment of the type-checking algorithm that lies at the heart of every such system. Also featured are two other interesting algorithms that until now have been buried in inaccessible technical literature. The mathematical presentation is rigorous but clear, making it the first book at this level that can be used as an introduction to type theory for computer scientists.

Type Theory and Functional Programming

Download Type Theory and Functional Programming PDF Online Free

Author :
Publisher : Addison Wesley Publishing Company
ISBN 13 :
Total Pages : 396 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Type Theory and Functional Programming by : Simon Thompson

Download or read book Type Theory and Functional Programming written by Simon Thompson and published by Addison Wesley Publishing Company. This book was released on 1991 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the role of Martin-Lof s constructive type theory in computer programming. The main focus of the book is how the theory can be successfully applied in practice. Introductory sections provide the necessary background in logic, lambda calculus and constructive mathematics, and exercises and chapter summaries are included to reinforce understanding.

Principia Mathematica

Download Principia Mathematica PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 688 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Principia Mathematica by : Alfred North Whitehead

Download or read book Principia Mathematica written by Alfred North Whitehead and published by . This book was released on 1910 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Formal Semantics in Modern Type Theories

Download Formal Semantics in Modern Type Theories PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119489210
Total Pages : 256 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Formal Semantics in Modern Type Theories by : Stergios Chatzikyriakidis

Download or read book Formal Semantics in Modern Type Theories written by Stergios Chatzikyriakidis and published by John Wiley & Sons. This book was released on 2020-12-18 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies formal semantics in modern type theories (MTTsemantics). Compared with simple type theory, MTTs have much richer type structures and provide powerful means for adequate semantic constructions. This offers a serious alternative to the traditional settheoretical foundation for linguistic semantics and opens up a new avenue for developing formal semantics that is both model-theoretic and proof-theoretic, which was not available before the development of MTTsemantics. This book provides a reader-friendly and precise description of MTTs and offers a comprehensive introduction to MTT-semantics. It develops several case studies, such as adjectival modification and copredication, to exemplify the attractiveness of using MTTs for the study of linguistic meaning. It also examines existing proof assistant technology based on MTT-semantics for the verification of semantic constructions and reasoning in natural language. Several advanced topics are also briefly studied, including dependent event types, an application of dependent typing to event semantics.

Proofs and Computations

Download Proofs and Computations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1139504169
Total Pages : 480 pages
Book Rating : 4.1/5 (395 download)

DOWNLOAD NOW!


Book Synopsis Proofs and Computations by : Helmut Schwichtenberg

Download or read book Proofs and Computations written by Helmut Schwichtenberg and published by Cambridge University Press. This book was released on 2011-12-15 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: Driven by the question, 'What is the computational content of a (formal) proof?', this book studies fundamental interactions between proof theory and computability. It provides a unique self-contained text for advanced students and researchers in mathematical logic and computer science. Part I covers basic proof theory, computability and Gödel's theorems. Part II studies and classifies provable recursion in classical systems, from fragments of Peano arithmetic up to Π11–CA0. Ordinal analysis and the (Schwichtenberg–Wainer) subrecursive hierarchies play a central role and are used in proving the 'modified finite Ramsey' and 'extended Kruskal' independence results for PA and Π11–CA0. Part III develops the theoretical underpinnings of the first author's proof assistant MINLOG. Three chapters cover higher-type computability via information systems, a constructive theory TCF of computable functionals, realizability, Dialectica interpretation, computationally significant quantifiers and connectives and polytime complexity in a two-sorted, higher-type arithmetic with linear logic.

Categorical Logic and Type Theory

Download Categorical Logic and Type Theory PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 9780444508539
Total Pages : 784 pages
Book Rating : 4.5/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Categorical Logic and Type Theory by : B. Jacobs

Download or read book Categorical Logic and Type Theory written by B. Jacobs and published by Gulf Professional Publishing. This book was released on 2001-05-10 with total page 784 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.

How to Prove It

Download How to Prove It PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521861241
Total Pages : 401 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis How to Prove It by : Daniel J. Velleman

Download or read book How to Prove It written by Daniel J. Velleman and published by Cambridge University Press. This book was released on 2006-01-16 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.

The Curry-Howard Isomorphism

Download The Curry-Howard Isomorphism PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 372 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Curry-Howard Isomorphism by : Philippe De Groote

Download or read book The Curry-Howard Isomorphism written by Philippe De Groote and published by . This book was released on 1995 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Proofs 101

Download Proofs 101 PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000227340
Total Pages : 197 pages
Book Rating : 4.0/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Proofs 101 by : Joseph Kirtland

Download or read book Proofs 101 written by Joseph Kirtland and published by CRC Press. This book was released on 2020-11-21 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proofs 101: An Introduction to Formal Mathematics serves as an introduction to proofs for mathematics majors who have completed the calculus sequence (at least Calculus I and II) and a first course in linear algebra. The book prepares students for the proofs they will need to analyze and write the axiomatic nature of mathematics and the rigors of upper-level mathematics courses. Basic number theory, relations, functions, cardinality, and set theory will provide the material for the proofs and lay the foundation for a deeper understanding of mathematics, which students will need to carry with them throughout their future studies. Features Designed to be teachable across a single semester Suitable as an undergraduate textbook for Introduction to Proofs or Transition to Advanced Mathematics courses Offers a balanced variety of easy, moderate, and difficult exercises

Lectures on the Curry-Howard Isomorphism

Download Lectures on the Curry-Howard Isomorphism PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080478921
Total Pages : 457 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Lectures on the Curry-Howard Isomorphism by : Morten Heine Sørensen

Download or read book Lectures on the Curry-Howard Isomorphism written by Morten Heine Sørensen and published by Elsevier. This book was released on 2006-07-04 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Curry-Howard isomorphism states an amazing correspondence between systems of formal logic as encountered in proof theory and computational calculi as found in type theory. For instance,minimal propositional logic corresponds to simply typed lambda-calculus, first-order logic corresponds to dependent types, second-order logic corresponds to polymorphic types, sequent calculus is related to explicit substitution, etc.The isomorphism has many aspects, even at the syntactic level:formulas correspond to types, proofs correspond to terms, provability corresponds to inhabitation, proof normalization corresponds to term reduction, etc.But there is more to the isomorphism than this. For instance, it is an old idea---due to Brouwer, Kolmogorov, and Heyting---that a constructive proof of an implication is a procedure that transformsproofs of the antecedent into proofs of the succedent; the Curry-Howard isomorphism gives syntactic representations of such procedures. The Curry-Howard isomorphism also provides theoretical foundations for many modern proof-assistant systems (e.g. Coq).This book give an introduction to parts of proof theory and related aspects of type theory relevant for the Curry-Howard isomorphism. It can serve as an introduction to any or both of typed lambda-calculus and intuitionistic logic.Key features- The Curry-Howard Isomorphism treated as common theme- Reader-friendly introduction to two complementary subjects: Lambda-calculus and constructive logics- Thorough study of the connection between calculi and logics- Elaborate study of classical logics and control operators- Account of dialogue games for classical and intuitionistic logic- Theoretical foundations of computer-assisted reasoning· The Curry-Howard Isomorphism treated as the common theme.· Reader-friendly introduction to two complementary subjects: lambda-calculus and constructive logics · Thorough study of the connection between calculi and logics.· Elaborate study of classical logics and control operators.· Account of dialogue games for classical and intuitionistic logic.· Theoretical foundations of computer-assisted reasoning