Transfer Learning

Download Transfer Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108860087
Total Pages : 394 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Transfer Learning by : Qiang Yang

Download or read book Transfer Learning written by Qiang Yang and published by Cambridge University Press. This book was released on 2020-02-13 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transfer learning deals with how systems can quickly adapt themselves to new situations, tasks and environments. It gives machine learning systems the ability to leverage auxiliary data and models to help solve target problems when there is only a small amount of data available. This makes such systems more reliable and robust, keeping the machine learning model faced with unforeseeable changes from deviating too much from expected performance. At an enterprise level, transfer learning allows knowledge to be reused so experience gained once can be repeatedly applied to the real world. For example, a pre-trained model that takes account of user privacy can be downloaded and adapted at the edge of a computer network. This self-contained, comprehensive reference text describes the standard algorithms and demonstrates how these are used in different transfer learning paradigms. It offers a solid grounding for newcomers as well as new insights for seasoned researchers and developers.

Hands-On Transfer Learning with Python

Download Hands-On Transfer Learning with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788839056
Total Pages : 430 pages
Book Rating : 4.7/5 (888 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Transfer Learning with Python by : Dipanjan Sarkar

Download or read book Hands-On Transfer Learning with Python written by Dipanjan Sarkar and published by Packt Publishing Ltd. This book was released on 2018-08-31 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning simplified by taking supervised, unsupervised, and reinforcement learning to the next level using the Python ecosystem Key Features Build deep learning models with transfer learning principles in Python implement transfer learning to solve real-world research problems Perform complex operations such as image captioning neural style transfer Book Description Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems. What you will learn Set up your own DL environment with graphics processing unit (GPU) and Cloud support Delve into transfer learning principles with ML and DL models Explore various DL architectures, including CNN, LSTM, and capsule networks Learn about data and network representation and loss functions Get to grips with models and strategies in transfer learning Walk through potential challenges in building complex transfer learning models from scratch Explore real-world research problems related to computer vision and audio analysis Understand how transfer learning can be leveraged in NLP Who this book is for Hands-On Transfer Learning with Python is for data scientists, machine learning engineers, analysts and developers with an interest in data and applying state-of-the-art transfer learning methodologies to solve tough real-world problems. Basic proficiency in machine learning and Python is required.

Transfer of Learning

Download Transfer of Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0123305950
Total Pages : 264 pages
Book Rating : 4.1/5 (233 download)

DOWNLOAD NOW!


Book Synopsis Transfer of Learning by : Robert E. Haskell

Download or read book Transfer of Learning written by Robert E. Haskell and published by Academic Press. This book was released on 2001 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text addresses the problem of how our past or current learning influences, is generalised and is applied or adapted to similar or new situations. It illustrates how transfer of learning can be promoted in the classroom and everyday life.

Learning That Transfers

Download Learning That Transfers PDF Online Free

Author :
Publisher : Corwin Press
ISBN 13 : 1071835874
Total Pages : 333 pages
Book Rating : 4.0/5 (718 download)

DOWNLOAD NOW!


Book Synopsis Learning That Transfers by : Julie Stern

Download or read book Learning That Transfers written by Julie Stern and published by Corwin Press. This book was released on 2021-03-30 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: "It is a pleasure to have a full length treatise on this most important topic, and may this focus on transfer become much more debated, taught, and valued in our schools." - John Hattie Teach students to use their learning to unlock new situations. How do you prepare your students for a future that you can’t see? And how do you do it without exhausting yourself? Teachers need a framework that allows them to keep pace with our rapidly changing world without having to overhaul everything they do. Learning That Transfers empowers teachers and curriculum designers alike to harness the critical concepts of traditional disciplines while building students’ capacity to navigate, interpret, and transfer their learning to solve novel and complex modern problems. Using a backwards design approach, this hands-on guide walks teachers step-by-step through the process of identifying curricular goals, establishing assessment targets, and planning curriculum and instruction that facilitates the transfer of learning to new and challenging situations. Key features include Thinking prompts to spur reflection and inform curricular planning and design. Next-day strategies that offer tips for practical, immediate action in the classroom. Design steps that outline critical moments in creating curriculum for learning that transfers. Links to case studies, discipline-specific examples, and podcast interviews with educators. A companion website that hosts templates, planning guides, and flexible options for adapting current curriculum documents. Using a framework that combines standards and the best available research on how we learn, design curriculum and instruction that prepares your students to meet the challenges of an uncertain future, while addressing the unique needs of your school community.

Transfer Learning for Natural Language Processing

Download Transfer Learning for Natural Language Processing PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 163835099X
Total Pages : 262 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Transfer Learning for Natural Language Processing by : Paul Azunre

Download or read book Transfer Learning for Natural Language Processing written by Paul Azunre and published by Simon and Schuster. This book was released on 2021-08-31 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build custom NLP models in record time by adapting pre-trained machine learning models to solve specialized problems. Summary In Transfer Learning for Natural Language Processing you will learn: Fine tuning pretrained models with new domain data Picking the right model to reduce resource usage Transfer learning for neural network architectures Generating text with generative pretrained transformers Cross-lingual transfer learning with BERT Foundations for exploring NLP academic literature Training deep learning NLP models from scratch is costly, time-consuming, and requires massive amounts of data. In Transfer Learning for Natural Language Processing, DARPA researcher Paul Azunre reveals cutting-edge transfer learning techniques that apply customizable pretrained models to your own NLP architectures. You’ll learn how to use transfer learning to deliver state-of-the-art results for language comprehension, even when working with limited label data. Best of all, you’ll save on training time and computational costs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Build custom NLP models in record time, even with limited datasets! Transfer learning is a machine learning technique for adapting pretrained machine learning models to solve specialized problems. This powerful approach has revolutionized natural language processing, driving improvements in machine translation, business analytics, and natural language generation. About the book Transfer Learning for Natural Language Processing teaches you to create powerful NLP solutions quickly by building on existing pretrained models. This instantly useful book provides crystal-clear explanations of the concepts you need to grok transfer learning along with hands-on examples so you can practice your new skills immediately. As you go, you’ll apply state-of-the-art transfer learning methods to create a spam email classifier, a fact checker, and more real-world applications. What's inside Fine tuning pretrained models with new domain data Picking the right model to reduce resource use Transfer learning for neural network architectures Generating text with pretrained transformers About the reader For machine learning engineers and data scientists with some experience in NLP. About the author Paul Azunre holds a PhD in Computer Science from MIT and has served as a Principal Investigator on several DARPA research programs. Table of Contents PART 1 INTRODUCTION AND OVERVIEW 1 What is transfer learning? 2 Getting started with baselines: Data preprocessing 3 Getting started with baselines: Benchmarking and optimization PART 2 SHALLOW TRANSFER LEARNING AND DEEP TRANSFER LEARNING WITH RECURRENT NEURAL NETWORKS (RNNS) 4 Shallow transfer learning for NLP 5 Preprocessing data for recurrent neural network deep transfer learning experiments 6 Deep transfer learning for NLP with recurrent neural networks PART 3 DEEP TRANSFER LEARNING WITH TRANSFORMERS AND ADAPTATION STRATEGIES 7 Deep transfer learning for NLP with the transformer and GPT 8 Deep transfer learning for NLP with BERT and multilingual BERT 9 ULMFiT and knowledge distillation adaptation strategies 10 ALBERT, adapters, and multitask adaptation strategies 11 Conclusions

Transfer of Learning

Download Transfer of Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030656322
Total Pages : 430 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Transfer of Learning by : Charles Hohensee

Download or read book Transfer of Learning written by Charles Hohensee and published by Springer Nature. This book was released on 2021-04-09 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a common language for and makes connections between transfer research in mathematics education and transfer research in related fields. It generates renewed excitement for and increased visibility of transfer research, by showcasing and aggregating leading-edge research from the transfer research community. This book also helps to establish transfer as a sub-field of research within mathematics education and extends and refines alternate perspectives on the transfer of learning. The book provides an overview of current knowledge in the field as well as informs future transfer research.

Turning Learning Into Action

Download Turning Learning Into Action PDF Online Free

Author :
Publisher : Kogan Page
ISBN 13 : 9780749472221
Total Pages : 0 pages
Book Rating : 4.4/5 (722 download)

DOWNLOAD NOW!


Book Synopsis Turning Learning Into Action by : Emma Weber

Download or read book Turning Learning Into Action written by Emma Weber and published by Kogan Page. This book was released on 2014 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improve learning transfer in your organisation with this book which provides a step-by-step methodology for facilitating genuine behavioural change and accountability back in the workplace.

Improving Learning Transfer

Download Improving Learning Transfer PDF Online Free

Author :
Publisher : Gower Publishing, Ltd.
ISBN 13 : 9780566088445
Total Pages : 226 pages
Book Rating : 4.0/5 (884 download)

DOWNLOAD NOW!


Book Synopsis Improving Learning Transfer by : Cyril Kirwan

Download or read book Improving Learning Transfer written by Cyril Kirwan and published by Gower Publishing, Ltd.. This book was released on 2009 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cyril Kirwan's book addresses this critical issue at a number of levels. Firstly, it explores what learning transfer actually is (it's about application of learning back at work, as well as maintenance of that learning over time). Secondly, it describes the main factors that affect transfer, in terms of trainee characteristics, training design factors, and work environment characteristics. It also examines how those factors exert their effect, which ones are more important, how they interact with one another, and in doing so constructs a practical learning transfer model for practitioners. The book also describes in some detail what the various factors working for or against learning transfer look like in practice. Finally, using case studies, it points the way towards what can be done before, during and after training to improve the rate of transfer.

Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques

Download Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1605667676
Total Pages : 734 pages
Book Rating : 4.6/5 (56 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques by : Olivas, Emilio Soria

Download or read book Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques written by Olivas, Emilio Soria and published by IGI Global. This book was released on 2009-08-31 with total page 734 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book investiges machine learning (ML), one of the most fruitful fields of current research, both in the proposal of new techniques and theoretic algorithms and in their application to real-life problems"--Provided by publisher.

Learning to Learn

Download Learning to Learn PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461555299
Total Pages : 346 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Learning to Learn by : Sebastian Thrun

Download or read book Learning to Learn written by Sebastian Thrun and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past three decades or so, research on machine learning and data mining has led to a wide variety of algorithms that learn general functions from experience. As machine learning is maturing, it has begun to make the successful transition from academic research to various practical applications. Generic techniques such as decision trees and artificial neural networks, for example, are now being used in various commercial and industrial applications. Learning to Learn is an exciting new research direction within machine learning. Similar to traditional machine-learning algorithms, the methods described in Learning to Learn induce general functions from experience. However, the book investigates algorithms that can change the way they generalize, i.e., practice the task of learning itself, and improve on it. To illustrate the utility of learning to learn, it is worthwhile comparing machine learning with human learning. Humans encounter a continual stream of learning tasks. They do not just learn concepts or motor skills, they also learn bias, i.e., they learn how to generalize. As a result, humans are often able to generalize correctly from extremely few examples - often just a single example suffices to teach us a new thing. A deeper understanding of computer programs that improve their ability to learn can have a large practical impact on the field of machine learning and beyond. In recent years, the field has made significant progress towards a theory of learning to learn along with practical new algorithms, some of which led to impressive results in real-world applications. Learning to Learn provides a survey of some of the most exciting new research approaches, written by leading researchers in the field. Its objective is to investigate the utility and feasibility of computer programs that can learn how to learn, both from a practical and a theoretical point of view.

Machine Learning for Healthcare Applications

Download Machine Learning for Healthcare Applications PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119791812
Total Pages : 418 pages
Book Rating : 4.1/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning for Healthcare Applications by : Sachi Nandan Mohanty

Download or read book Machine Learning for Healthcare Applications written by Sachi Nandan Mohanty and published by John Wiley & Sons. This book was released on 2021-04-13 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: When considering the idea of using machine learning in healthcare, it is a Herculean task to present the entire gamut of information in the field of intelligent systems. It is, therefore the objective of this book to keep the presentation narrow and intensive. This approach is distinct from others in that it presents detailed computer simulations for all models presented with explanations of the program code. It includes unique and distinctive chapters on disease diagnosis, telemedicine, medical imaging, smart health monitoring, social media healthcare, and machine learning for COVID-19. These chapters help develop a clear understanding of the working of an algorithm while strengthening logical thinking. In this environment, answering a single question may require accessing several data sources and calling on sophisticated analysis tools. While data integration is a dynamic research area in the database community, the specific needs of research have led to the development of numerous middleware systems that provide seamless data access in a result-driven environment. Since this book is intended to be useful to a wide audience, students, researchers and scientists from both academia and industry may all benefit from this material. It contains a comprehensive description of issues for healthcare data management and an overview of existing systems, making it appropriate for introductory and instructional purposes. Prerequisites are minimal; the readers are expected to have basic knowledge of machine learning. This book is divided into 22 real-time innovative chapters which provide a variety of application examples in different domains. These chapters illustrate why traditional approaches often fail to meet customers’ needs. The presented approaches provide a comprehensive overview of current technology. Each of these chapters, which are written by the main inventors of the presented systems, specifies requirements and provides a description of both the chosen approach and its implementation. Because of the self-contained nature of these chapters, they may be read in any order. Each of the chapters use various technical terms which involve expertise in machine learning and computer science.

Transfer of Learning

Download Transfer of Learning PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483297373
Total Pages : 302 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Transfer of Learning by : Stephen M. Cormier

Download or read book Transfer of Learning written by Stephen M. Cormier and published by Academic Press. This book was released on 2014-06-28 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the mid-1970s, scientific and educational research has left a gap in the field of basic and applied research on transfer of learning. This book fills the gap with state-of-the-art information on recent research in the field, emphasizing methodological paradigms and interpretive concepts based on contemporary cognitive/information processing approaches to the study of human behavior. Issues discussed include how transfer is measured, how its direction and magnitude are determined, how training for transfer differs from training for acquisition, and whether different principles of transfer apply to motor, cognitive, and meta-cognitive processes.

Introduction to Transfer Learning

Download Introduction to Transfer Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811975841
Total Pages : 333 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Transfer Learning by : Jindong Wang

Download or read book Introduction to Transfer Learning written by Jindong Wang and published by Springer Nature. This book was released on 2023-03-30 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Transfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by transferring it to another, new domain. Over the years, a number of relevant topics have attracted the interest of the research and application community: transfer learning, pre-training and fine-tuning, domain adaptation, domain generalization, and meta-learning. This book offers a comprehensive tutorial on an overview of transfer learning, introducing new researchers in this area to both classic and more recent algorithms. Most importantly, it takes a “student’s” perspective to introduce all the concepts, theories, algorithms, and applications, allowing readers to quickly and easily enter this area. Accompanying the book, detailed code implementations are provided to better illustrate the core ideas of several important algorithms, presenting good examples for practice.

Federated and Transfer Learning

Download Federated and Transfer Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031117484
Total Pages : 371 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis Federated and Transfer Learning by : Roozbeh Razavi-Far

Download or read book Federated and Transfer Learning written by Roozbeh Razavi-Far and published by Springer Nature. This book was released on 2022-09-30 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a collection of recent research works on learning from decentralized data, transferring information from one domain to another, and addressing theoretical issues on improving the privacy and incentive factors of federated learning as well as its connection with transfer learning and reinforcement learning. Over the last few years, the machine learning community has become fascinated by federated and transfer learning. Transfer and federated learning have achieved great success and popularity in many different fields of application. The intended audience of this book is students and academics aiming to apply federated and transfer learning to solve different kinds of real-world problems, as well as scientists, researchers, and practitioners in AI industries, autonomous vehicles, and cyber-physical systems who wish to pursue new scientific innovations and update their knowledge on federated and transfer learning and their applications.

Berlin Transfer. Learning from the Global South

Download Berlin Transfer. Learning from the Global South PDF Online Free

Author :
Publisher :
ISBN 13 : 9783944074146
Total Pages : 160 pages
Book Rating : 4.0/5 (741 download)

DOWNLOAD NOW!


Book Synopsis Berlin Transfer. Learning from the Global South by : Rainer Hehl

Download or read book Berlin Transfer. Learning from the Global South written by Rainer Hehl and published by . This book was released on 2015-10-01 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Transfer Learning through Embedding Spaces

Download Transfer Learning through Embedding Spaces PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000400573
Total Pages : 221 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Transfer Learning through Embedding Spaces by : Mohammad Rostami

Download or read book Transfer Learning through Embedding Spaces written by Mohammad Rostami and published by CRC Press. This book was released on 2021-06-28 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent progress in artificial intelligence (AI) has revolutionized our everyday life. Many AI algorithms have reached human-level performance and AI agents are replacing humans in most professions. It is predicted that this trend will continue and 30% of work activities in 60% of current occupations will be automated. This success, however, is conditioned on availability of huge annotated datasets to training AI models. Data annotation is a time-consuming and expensive task which still is being performed by human workers. Learning efficiently from less data is a next step for making AI more similar to natural intelligence. Transfer learning has been suggested a remedy to relax the need for data annotation. The core idea in transfer learning is to transfer knowledge across similar tasks and use similarities and previously learned knowledge to learn more efficiently. In this book, we provide a brief background on transfer learning and then focus on the idea of transferring knowledge through intermediate embedding spaces. The idea is to couple and relate different learning through embedding spaces that encode task-level relations and similarities. We cover various machine learning scenarios and demonstrate that this idea can be used to overcome challenges of zero-shot learning, few-shot learning, domain adaptation, continual learning, lifelong learning, and collaborative learning.

A Survey on Deep Transfer Learning and Edge Computing for Mitigating the COVID-19 Pandemic

Download A Survey on Deep Transfer Learning and Edge Computing for Mitigating the COVID-19 Pandemic PDF Online Free

Author :
Publisher : Infinite Study
ISBN 13 :
Total Pages : 30 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis A Survey on Deep Transfer Learning and Edge Computing for Mitigating the COVID-19 Pandemic by : Abu Su an

Download or read book A Survey on Deep Transfer Learning and Edge Computing for Mitigating the COVID-19 Pandemic written by Abu Su an and published by Infinite Study. This book was released on with total page 30 pages. Available in PDF, EPUB and Kindle. Book excerpt: Global Health sometimes faces pandemics as are currently facing COVID-19 disease. The spreading and infection factors of this disease are very high. A huge number of people from most of the countries are infected within six months from its rst report of appearance and it keeps spreading. The required systems are not ready up to some stages for any pandemic; therefore, mitigation with existing capacity becomes necessary. On the other hand, modern-era largely depends on Artificial Intelligence(AI) including Data Science; Deep Learning(DL) is one of the current ag-bearer of these techniques. It could use to mitigate COVID-19 like pandemics in terms of stop spread, diagnosis of the disease, drug & vaccine discovery, treatment, and many more.