Towards Highly Scalable, Environmentally Benign, High Performance Silicon-cased Lithium-ion Battery Anodes

Download Towards Highly Scalable, Environmentally Benign, High Performance Silicon-cased Lithium-ion Battery Anodes PDF Online Free

Author :
Publisher :
ISBN 13 : 9781321734959
Total Pages : 134 pages
Book Rating : 4.7/5 (349 download)

DOWNLOAD NOW!


Book Synopsis Towards Highly Scalable, Environmentally Benign, High Performance Silicon-cased Lithium-ion Battery Anodes by : Zachary James Favors

Download or read book Towards Highly Scalable, Environmentally Benign, High Performance Silicon-cased Lithium-ion Battery Anodes written by Zachary James Favors and published by . This book was released on 2015 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon dioxide is discussed and analyzed as a potential next-generation LIB material in the form of SiO2 NTs synthesized via chemical vapor deposition (CVD) of polydimethylsiloxane (PMDS) elastomer on anodic aluminum oxide (AAO) templates. SiO2 NTs produce a highly stable specific capacity of 1266 mAh g-1 after 100 cycles with Coulombic efficiencies (CEs) in excess of 98.5%.

Low-Cost and Scalable Material Designs and Processes for Next-Generation Lithium-Ion Battery Anodes

Download Low-Cost and Scalable Material Designs and Processes for Next-Generation Lithium-Ion Battery Anodes PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 112 pages
Book Rating : 4.:/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Low-Cost and Scalable Material Designs and Processes for Next-Generation Lithium-Ion Battery Anodes by : Jesse Adam Baucom

Download or read book Low-Cost and Scalable Material Designs and Processes for Next-Generation Lithium-Ion Battery Anodes written by Jesse Adam Baucom and published by . This book was released on 2020 with total page 112 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern human civilization depends on the production and utilization of vast quantities of energy. While innovations in technology are generally met with applause, discoveries over the potential catastrophic impacts of our current ways of generating energy on our climate and society have prompted worldwide efforts to mitigate these issues. Although environmentally-friendly and sustainable methods for electricity generation such as solar photovoltaic energy hold promise for solving our energy issues, a complete shift towards renewable energy would require the development of grid-scale energy storage systems due to the intermittent nature of such technology. In addition, the automotive industry is undergoing a complete transformation to electrification in efforts to reduce the environmental impact of vehicles and comply with increasingly stringent regulations, representing yet another urgent need for high-performance energy storage systems. Of all energy storage technologies for potentially enabling grid storage and electric vehicles, lithium-ion batteries are of particular interest due to their rechargeability, high energy and power densities, and energy efficiency. Although lithium-ion batteries are now widely used for a variety of applications, their prohibitively high cost has prevented their application in these crucial technologies. For specific applications such as electric vehicles and portable electronics, lithium-ion batteries have yet to achieve the energy and power density requirements necessary, posing additional barriers. On top of these obstacles, the commercial viability of lithium-ion batteries for these applications depends on the ability to scale up the production processes to satisfy the market need, creating yet another challenge for solving these important issues. While the development of high-capacity anode materials for lithium-ion batteries is a promising route towards enabling these applications, many of the novel designs for such materials are prohibitively expensive or difficult to scale, preventing them from achieving widespread market adoption. In this dissertation, we describe novel materials and processes for producing three high-capacity anode materials of great industry and academic interest: graphene, silicon, and lithium metal. First, we present a novel method for induction heating-mediated synthesis of freestanding anodes for improving the scalability of traditional chemical vapor deposition processes through reduced process downtimes while enabling higher energy and volumetric densities in lithium-ion batteries by virtue of the freestanding nature of the electrode design, reducing the mass and volume of electrochemically-inactive components. Next, we describe a method for the production of silicon/PVA/graphite composite anodes with long cycling life through the use of a 1-step ball milling method utilizing low-cost precursors for scalable production of high-capacity anode materials. Finally, we reveal a design for air-stable lithium metal hosts fabricated from a scalable powder metallurgic approach, which allows for the fabrication of high-performance lithium metal batteries compatible with existing infrastructure, circumventing the need for a high-cost assembly in an inert atmosphere.

Silicon Anode Systems for Lithium-Ion Batteries

Download Silicon Anode Systems for Lithium-Ion Batteries PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0323851819
Total Pages : 536 pages
Book Rating : 4.3/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Silicon Anode Systems for Lithium-Ion Batteries by : Prashant N. Kumta

Download or read book Silicon Anode Systems for Lithium-Ion Batteries written by Prashant N. Kumta and published by Elsevier. This book was released on 2021-09-10 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicon Anode Systems for Lithium-Ion Batteries is an introduction to silicon anodes as an alternative to traditional graphite-based anodes. The book provides a comprehensive overview including abundance, system voltage, and capacity. It provides key insights into the basic challenges faced by the materials system such as new configurations and concepts for overcoming the expansion and contraction related problems. This book has been written for the practitioner, researcher or developer of commercial technologies. Provides a thorough explanation of the advantages, challenge, materials science, and commercial prospects of silicon and related anode materials for lithium-ion batteries Provides insights into practical issues including processing and performance of advanced Si-based materials in battery-relevant materials systems Discusses suppressants in electrolytes to minimize adverse effects of solid electrolyte interphase (SEI) formation and safety limitations associated with this technology

Rational Materials Design Enabling High Energy Density Lithium-Ion Batteries

Download Rational Materials Design Enabling High Energy Density Lithium-Ion Batteries PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 161 pages
Book Rating : 4.:/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Rational Materials Design Enabling High Energy Density Lithium-Ion Batteries by : Wenyue Shi

Download or read book Rational Materials Design Enabling High Energy Density Lithium-Ion Batteries written by Wenyue Shi and published by . This book was released on 2020 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aggravated environmental issues and limited resources call for renewable substitutions for fossil energy. In order to enable the wide use of renewable energy resources such as wind power and solar power, energy storage devices and materials have to be developed accordingly. Among all the energy storage candidates, rechargeable batteries, especially lithium- ion batteries (LIBs) show great potential. The high energy and power density of LIBs benefitted from the light-weight of lithium metal is a great advantage over other energy storage devices such as lead-acid batteries. They are also relatively environmental-friendly as a result. LIBs have long cycling life, with little memory effect. The properties of LIBs including physical features and energy storage characteristics are adjustable and flexible with different designs and use of materials, endowing them with broad applications from portable consumer electronics to electric vehicles to grid-scale energy storage. Anode as one major component of LIBs, has been a research focus for years. In light of the strong need for LIBs with higher energy density, silicon anode materials and lithium metal anode have been especially popular because of their ultrahigh specific capacity that significantly boosts the energy density of the according cells. Given their favorable advantages, they have major drawbacks that decisively hinder their applications in the market. Silicon materials, decided by its alloying lithiation mechanism, have almost 300% volume expansion upon full lithiation, which can cause serious fractures on the electrode and eventual failure. On the other hand, despite the high capacity and low lithiation potential of Li metal, Li dendrite growth is a severe problem that directly leads to a cell failure and even unwanted safety concerns. In this dissertation, low-cost and durable silicon anode materials are developed. To overcome the major problems of Si anode materials, a covalently-bonded nanocomposite of silicon and poly(vinyl alcohol) (Si-PVA) by high-energy ball-milling of a mixture of micron- sized Si and PVA is designed. The obtained Si nanoparticles are wrapped by resilient PVA coatings that covalently bonds to the Si particles. In such nanostructure, the soft PVA coatings can accommodate the volume change of the Si particles during repeated lithiation and delithiation. Simultaneously, as formed covalent bonds enhance the mechanical strength of the coatings. Due to the significantly improved structural stability, the Si-PVA composite delivers a lifespan of 100 cycles with a high capacity of 1526 mAh g-1. In addition, a high initial Coulombic efficiency over 88% and an average value of 99.2% in subsequent cycles can be achieved. This reactive ball milling strategy provide a low-cost and scalable route to fabricate high performance anode materials. To take a further step, an electrolyte membrane is designed and developed to enable the use of Li metal anode. . Inspired by ion channels in biology systems, we constructed lithium-ionchannels by chemically modifying the nanoporous channels of metal-organic frameworks (MOFs) with negatively charged sulfonate groups. Analogous to the biological ion channels, such negatively charged moieties repel anions while allowing effective transport of cations through the pore channels. Implementing such MOFs as an electrolyte membrane dramatically improves the lithium-ion transference number, enhances the rate capability and durability of the batteries. With the MOF membrane, Li dendrite growth is much suppressed, leading to an improved Coulombic efficiency and a prolonged cycle life.

High Performance Anode for Advanced Li Batteries

Download High Performance Anode for Advanced Li Batteries PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 23 pages
Book Rating : 4.:/5 (94 download)

DOWNLOAD NOW!


Book Synopsis High Performance Anode for Advanced Li Batteries by :

Download or read book High Performance Anode for Advanced Li Batteries written by and published by . This book was released on 2015 with total page 23 pages. Available in PDF, EPUB and Kindle. Book excerpt: The overall objective of this Phase I SBIR effort was to advance the manufacturing technology for ASI's Si-CNF high-performance anode by creating a framework for large volume production and utilization of low-cost Si-coated carbon nanofibers (Si-CNF) for the battery industry. This project explores the use of nano-structured silicon which is deposited on a nano-scale carbon filament to achieve the benefits of high cycle life and high charge capacity without the consequent fading of, or failure in the capacity resulting from stress-induced fracturing of the Si particles and de-coupling from the electrode. ASI's patented coating process distinguishes itself from others, in that it is highly reproducible, readily scalable and results in a Si-CNF composite structure containing 25-30% silicon, with a compositionally graded interface at the Si-CNF interface that significantly improve cycling stability and enhances adhesion of silicon to the carbon fiber support. In Phase I, the team demonstrated the production of the Si-CNF anode material can successfully be transitioned from a static bench-scale reactor into a fluidized bed reactor. In addition, ASI made significant progress in the development of low cost, quick testing methods which can be performed on silicon coated CNFs as a means of quality control. To date, weight change, density, and cycling performance were the key metrics used to validate the high performance anode material. Under this effort, ASI made strides to establish a quality control protocol for the large volume production of Si-CNFs and has identified several key technical thrusts for future work. Using the results of this Phase I effort as a foundation, ASI has defined a path forward to commercialize and deliver high volume and low-cost production of SI-CNF material for anodes in Li-ion batteries.

Electrochemical Energy

Download Electrochemical Energy PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482227282
Total Pages : 619 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Electrochemical Energy by : Pei Kang Shen

Download or read book Electrochemical Energy written by Pei Kang Shen and published by CRC Press. This book was released on 2018-10-08 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: Electrochemical Energy: Advanced Materials and Technologies covers the development of advanced materials and technologies for electrochemical energy conversion and storage. The book was created by participants of the International Conference on Electrochemical Materials and Technologies for Clean Sustainable Energy (ICES-2013) held in Guangzhou, China, and incorporates select papers presented at the conference. More than 300 attendees from across the globe participated in ICES-2013 and gave presentations in six major themes: Fuel cells and hydrogen energy Lithium batteries and advanced secondary batteries Green energy for a clean environment Photo-Electrocatalysis Supercapacitors Electrochemical clean energy applications and markets Comprised of eight sections, this book includes 25 chapters featuring highlights from the conference and covering every facet of synthesis, characterization, and performance evaluation of the advanced materials for electrochemical energy. It thoroughly describes electrochemical energy conversion and storage technologies such as batteries, fuel cells, supercapacitors, hydrogen generation, and their associated materials. The book contains a number of topics that include electrochemical processes, materials, components, assembly and manufacturing, and degradation mechanisms. It also addresses challenges related to cost and performance, provides varying perspectives, and emphasizes existing and emerging solutions. The result of a conference encouraging enhanced research collaboration among members of the electrochemical energy community, Electrochemical Energy: Advanced Materials and Technologies is dedicated to the development of advanced materials and technologies for electrochemical energy conversion and storage and details the technologies, current achievements, and future directions in the field.

Engineered Nano-architectures as Advanced Anode Materials for Next Generation Lithium Ion Batteries

Download Engineered Nano-architectures as Advanced Anode Materials for Next Generation Lithium Ion Batteries PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 130 pages
Book Rating : 4.:/5 (926 download)

DOWNLOAD NOW!


Book Synopsis Engineered Nano-architectures as Advanced Anode Materials for Next Generation Lithium Ion Batteries by : Fathy Mohamed Hassan

Download or read book Engineered Nano-architectures as Advanced Anode Materials for Next Generation Lithium Ion Batteries written by Fathy Mohamed Hassan and published by . This book was released on 2014 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: Li-ion batteries have a predominant market share as mobile energy storage devices, especially in consumer electronics. New concepts for electrode material designs are, however, necessary to boost their energy and power densities, and most importantly, the long term cycle stability. This will allow for these devices to gain widespread acceptance in electric vehicles, an area with immense market potential and environmental benefits. From a practical perspective, new electrode materials must be developed by simplistic, environmentally friendly and low cost processes. As a new class of electrode materials, mesoporous Sn/SnO2/Carbon composites with uniformly distributed Sn/SnO2 embedded within the carbon pore walls have been rationally designed and synthesized. These nanocomposites have been characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray photoelectron spectroscopy (XPS), and tested as negative electrodes in a cell using lithium foil as the counter electrode. The inclusion of metallic Sn in SnO2/CMK3 resulted in a unique, ordered structure and provided a synergistic effect which resulted in an impressive initial reversible capacity of 799 mAh g-1. In addition, at a high current of 800 mAg-1, the heterogeneous structure was able to provide a stable capacity of 350 mAhg-1 and a retention capacity of ~ 670 mAh g-1 after 60 cycles. While Sn/SnO2 composites have been deemed very promising, Si materials boast improved energy storage capacities, inspiring us to investigate these materials as new anode structure. A novel one-pot synthesis for the sub-eutectic growth of (111) oriented Si nanowires on an in-situ formed nickel nanoparticle catalyst prepared from an inexpensive nickel nitrate precursor is developed. Anchoring the nickel nanoparticles to a simultaneously reduced graphene oxide support created synergy between the individual components of the c-SiNW-G composite, which greatly improved the reversible charge capacity and its retention at high current density when applied as an anode for a lithium-ion battery. The c-SiNW-G electrodes in a Li-ion battery achieved excellent high-rate performance, producing a stable reversible capacity of 550 mAh g-1 after 100 cycles at 6.8 A g-1 (78% of that at 0.1 A g-1). Thus, this process creates an important building block for a new wave of low cost silicon nanowire materials and a promising avenue for high rate Li-ion batteries. While excellent rate capability was obtained by using SiNW/graphene based material, simplifying the process may drive Si based materials to commercialization. A novel, economical flash heat treatment to fabricate silicon based electrodes is introduced to boost the performance and cycle capability of Li-ion batteries. The treatment results in a high mass fraction of Si, improved interfacial contact, synergistic SiO2/C coating and a conductive cellular network for improved electronic conductivity, as well as flexibility for stress compensation. The developed electrodes achieve first cycle efficiency of ~84% and a maximum charge capacity of 3525 mA h g-1, which is almost 84% of silicon's theoretical maximum. Furthermore, a stable reversible charge capacity of 1150 mA h g-1 at 1.2 A g-1 can be achieved over 500 cycles. Thus, the flash heat treatment method introduces a promising avenue for the production of industrially viable, next-generation Li-ion batteries. Even though we obtained a dramatic improvement to a treated electrode based on commercial silicon, we still need to boast the cycle stability and high areal capacity achieved by higher electrode loading. Thus, we report a scalable approach that relies on covalent binding commercially available Si nanoparticles (SiNP) to sulfur-doped graphene (SG) followed by shielding them with cyclized polyacrylonitrile. The covalent synergy led to improved material property that can deliver stable reversible capacity of 1033 mAh g-1 for more than 2000 cycles at a rate of 1 A g-1. The areal capacity was 3.5 mAh cm-2 at 0.1 A g-1, approaching the commercial demand. The spatial arrangement of Si after cycling reveals that it was confined in nanowires morphology. This reveals that the solid electrolyte interphase remains stable leading to superior cyclability. Our DFT calculations revealed covalent hybrid interaction between Si, S, and C leading to stable material configuration. Furthermore, the structure synergy facilitated lithium diffusion, which strongly supports our results. This simple, low cost, feasible, and safe approach provide new avenues for engineering electrode structure for enhanced performance.

Printed Batteries

Download Printed Batteries PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119287421
Total Pages : 270 pages
Book Rating : 4.1/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Printed Batteries by : Senentxu Lanceros-Méndez

Download or read book Printed Batteries written by Senentxu Lanceros-Méndez and published by John Wiley & Sons. This book was released on 2018-04-23 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers the first comprehensive account of this interesting and growing research field Printed Batteries: Materials, Technologies and Applications reviews the current state of the art for printed batteries, discussing the different types and materials, and describing the printing techniques. It addresses the main applications that are being developed for printed batteries as well as the major advantages and remaining challenges that exist in this rapidly evolving area of research. It is the first book on printed batteries that seeks to promote a deeper understanding of this increasingly relevant research and application area. It is written in a way so as to interest and motivate readers to tackle the many challenges that lie ahead so that the entire research community can provide the world with a bright, innovative future in the area of printed batteries. Topics covered in Printed Batteries include, Printed Batteries: Definition, Types and Advantages; Printing Techniques for Batteries, Including 3D Printing; Inks Formulation and Properties for Printing Techniques; Rheological Properties for Electrode Slurry; Solid Polymer Electrolytes for Printed Batteries; Printed Battery Design; and Printed Battery Applications. Covers everything readers need to know about the materials and techniques required for printed batteries Informs on the applications for printed batteries and what the benefits are Discusses the challenges that lie ahead as innovators continue with their research Printed Batteries: Materials, Technologies and Applications is a unique and informative book that will appeal to academic researchers, industrial scientists, and engineers working in the areas of sensors, actuators, energy storage, and printed electronics.

Recycling of Lithium-Ion Batteries

Download Recycling of Lithium-Ion Batteries PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319705725
Total Pages : 312 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Recycling of Lithium-Ion Batteries by : Arno Kwade

Download or read book Recycling of Lithium-Ion Batteries written by Arno Kwade and published by Springer. This book was released on 2017-12-12 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses recycling technologies for many of the valuable and scarce materials from spent lithium-ion batteries. A successful transition to electric mobility will result in large volumes of these. The book discusses engineering issues in the entire process chain from disassembly over mechanical conditioning to chemical treatment. A framework for environmental and economic evaluation is presented and recommendations for researchers as well as for potential operators are derived.

Materials for Solid State Batteries

Download Materials for Solid State Batteries PDF Online Free

Author :
Publisher : World Scientific Publishing Company
ISBN 13 :
Total Pages : 524 pages
Book Rating : 4.:/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Materials for Solid State Batteries by : B. V. R. Chowdari

Download or read book Materials for Solid State Batteries written by B. V. R. Chowdari and published by World Scientific Publishing Company. This book was released on 1986 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Hybrid Hydrogen Systems

Download Hybrid Hydrogen Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1846284678
Total Pages : 139 pages
Book Rating : 4.8/5 (462 download)

DOWNLOAD NOW!


Book Synopsis Hybrid Hydrogen Systems by : Said Al-Hallaj

Download or read book Hybrid Hydrogen Systems written by Said Al-Hallaj and published by Springer Science & Business Media. This book was released on 2011-04-19 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hybrid Hydrogen Systems for Stationary and Transportation Applications presents an original, comprehensive approach to hybrid energy system optimization and provides a much-needed systems approach to hydrogen energy applications. This textbook will be bought by graduate and senior undergraduate students studying renewable energy and the design and optimisation of hydrogen energy systems as well as the lecturers who teach these subjects. Hybrid Hydrogen Systems for Stationary and Transportation Applications will also be bought by researchers and practitioners working with hydrogen and fuel cells as well as policy makers and advocates of renewable energy.

Lithium-ion Batteries

Download Lithium-ion Batteries PDF Online Free

Author :
Publisher :
ISBN 13 : 9783030168001
Total Pages : 247 pages
Book Rating : 4.1/5 (68 download)

DOWNLOAD NOW!


Book Synopsis Lithium-ion Batteries by :

Download or read book Lithium-ion Batteries written by and published by . This book was released on 2019 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is the first machine-generated scientific book in chemistry published by Springer Nature. Serving as an innovative prototype defining the current status of the technology, it also provides an overview about the latest trends of lithium-ion batteries research. This book explores future ways of informing researchers and professionals. State-of-the-art computer algorithms were applied to: select relevant sources from Springer Nature publications, arrange these in a topical order, and provide succinct summaries of these articles. The result is a cross-corpora auto-summarization of current texts, organized by means of a similarity-based clustering routine in coherent chapters and sections. This book summarizes more than 150 research articles published from 2016 to 2018 and provides an informative and concise overview of recent research into anode and cathode materials as well as further aspects such as separators, polymer electrolytes, thermal behavior and modelling. With this prototype, Springer Nature has begun an innovative journey to explore the field of machine-generated content and to find answers to the manifold questions on this fascinating topic. Therefore it was intentionally decided not to manually polish or copy-edit any of the texts so as to highlight the current status and remaining boundaries of machine-generated content. Our goal is to initiate a broad discussion, together with the research community and domain experts, about the future opportunities, challenges and limitations of this technology."--Publisher's website.

Micro Energy Harvesting

Download Micro Energy Harvesting PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527319026
Total Pages : 492 pages
Book Rating : 4.5/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Micro Energy Harvesting by : Danick Briand

Download or read book Micro Energy Harvesting written by Danick Briand and published by John Wiley & Sons. This book was released on 2015-06-22 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: With its inclusion of the fundamentals, systems and applications, this reference provides readers with the basics of micro energy conversion along with expert knowledge on system electronics and real-life microdevices. The authors address different aspects of energy harvesting at the micro scale with a focus on miniaturized and microfabricated devices. Along the way they provide an overview of the field by compiling knowledge on the design, materials development, device realization and aspects of system integration, covering emerging technologies, as well as applications in power management, energy storage, medicine and low-power system electronics. In addition, they survey the energy harvesting principles based on chemical, thermal, mechanical, as well as hybrid and nanotechnology approaches. In unparalleled detail this volume presents the complete picture -- and a peek into the future -- of micro-powered microsystems.

Materials for Sustainable Energy

Download Materials for Sustainable Energy PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814317640
Total Pages : 360 pages
Book Rating : 4.8/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Materials for Sustainable Energy by : Vincent Dusastre

Download or read book Materials for Sustainable Energy written by Vincent Dusastre and published by World Scientific. This book was released on 2011 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The search for cleaner, cheaper, smaller and more efficient energy technologies has to a large extent been motivated by the development of new materials. The aim of this collection of articles is therefore to focus on what materials-based solutions can offer and show how the rationale design and improvement of their physical and chemical properties can lead to energy-production alternatives that have the potential to compete with existing technologies. In terms of alternative means to generate electricity that utilize renewable energy sources, the most dramatic breakthroughs for both mobile (i.e., transportation) and stationary applications are taking place in the fields of solar and fuel cells. And from an energy-storage perspective, exciting developments can be seen emerging from the fields of rechargeable batteries and hydrogen storage.

Polymer Adhesion, Friction, and Lubrication

Download Polymer Adhesion, Friction, and Lubrication PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780470916278
Total Pages : 0 pages
Book Rating : 4.9/5 (162 download)

DOWNLOAD NOW!


Book Synopsis Polymer Adhesion, Friction, and Lubrication by : Hongbo Zeng

Download or read book Polymer Adhesion, Friction, and Lubrication written by Hongbo Zeng and published by John Wiley & Sons. This book was released on 2013-04-01 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Specifically dedicated to polymer and biopolymer systems, Polymer Adhesion, Friction, and Lubrication guides readers to the scratch, wear, and lubrication properties of polymers and the engineering applications, from biomedical research to automotive engineering. Author Hongbo Zeng details different experimental and theoretical methods used to probe static and dynamic properties of polymer materials and biomacromolecular systems. Topics include the use of atomic force microscopy (AFM) to analyze nanotribology, polymer thin films and brushes, nanoparticles, rubber and tire technology, synovial joint lubrication, adhesion in paper products, bioMEMS, and electrorheological fluids.

Lithium-Ion Supercapacitors

Download Lithium-Ion Supercapacitors PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429959591
Total Pages : 301 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Lithium-Ion Supercapacitors by : Lei Zhang

Download or read book Lithium-Ion Supercapacitors written by Lei Zhang and published by CRC Press. This book was released on 2018-05-25 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive understanding of the principles for operating lithium-ion supercapacitors (LISCs), their challenges, technological trends and perspectives. LISC technology has high potential to replace conventional rechargeable batteries such as lead-acid and nickel metal hydride batteries for automotive, portable electronics, and stationary applications. The book offers detailed analysis of LISCs at the material, component, and system levels to evaluate the different approaches to their integration. It also discusses economics, market, manufacture, and commercialization status of LISCs. It is an up-to-date study of an emerging field, written by experts, ideal for those in academia and industry who want a detailed explanation of the technology.

Lithium-ion Battery Materials and Engineering

Download Lithium-ion Battery Materials and Engineering PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1447165489
Total Pages : 212 pages
Book Rating : 4.4/5 (471 download)

DOWNLOAD NOW!


Book Synopsis Lithium-ion Battery Materials and Engineering by : Malgorzata K. Gulbinska

Download or read book Lithium-ion Battery Materials and Engineering written by Malgorzata K. Gulbinska and published by Springer. This book was released on 2014-09-06 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gaining public attention due, in part, to their potential application as energy storage devices in cars, Lithium-ion batteries have encountered widespread demand, however, the understanding of lithium-ion technology has often lagged behind production. This book defines the most commonly encountered challenges from the perspective of a high-end lithium-ion manufacturer with two decades of experience with lithium-ion batteries and over six decades of experience with batteries of other chemistries. Authors with years of experience in the applied science and engineering of lithium-ion batteries gather to share their view on where lithium-ion technology stands now, what are the main challenges, and their possible solutions. The book contains real-life examples of how a subtle change in cell components can have a considerable effect on cell’s performance. Examples are supported with approachable basic science commentaries. Providing a unique combination of practical know-how with an in-depth perspective, this book will appeal to graduate students, young faculty members, or others interested in the current research and development trends in lithium-ion technology.