Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Theta Functions And Knots
Download Theta Functions And Knots full books in PDF, epub, and Kindle. Read online Theta Functions And Knots ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Theta Functions and Knots by : R?zvan Gelca
Download or read book Theta Functions and Knots written by R?zvan Gelca and published by World Scientific. This book was released on 2014 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Razvan Gelca and Alejandro Uribe, which converts Weil''s representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology. Theta Functions and Knots can be read in two perspectives. People with an interest in theta functions or knot theory can learn how the two are related. Those interested in ChernOCoSimons theory find here an introduction using the simplest case, that of abelian ChernOCoSimons theory. Moreover, the construction of abelian ChernOCoSimons theory is based entirely on quantum mechanics, and not on quantum field theory as it is usually done. Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is a self-contained, unified presentation. It is suitable for an advanced graduate course, as well as for self-study. Contents: Some Historical Facts; A Quantum Mechanical Prototype; Surfaces and Curves; The Theta Functions Associated to a Riemann Surface; From Theta Functions to Knots; Some Results About 3- and 4-Dimensional Manifolds; The Discrete Fourier Transform and Topological Quantum Field Theory; Theta Functions and Quantum Groups; An Epilogue OCo Abelian ChernOCoSimons Theory. Readership: Graduate students and young researchers with an interest in complex analysis, mathematical physics, algebra geometry and low dimensional topology.
Book Synopsis Theta Functions And Knots by : Razvan Gelca
Download or read book Theta Functions And Knots written by Razvan Gelca and published by World Scientific. This book was released on 2014-05-21 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the relationship between classical theta functions and knots. It is based on a novel idea of Răzvan Gelca and Alejandro Uribe, which converts Weil's representation of the Heisenberg group on theta functions to a knot theoretical framework, by giving a topological interpretation to a certain induced representation. It also explains how the discrete Fourier transform can be related to 3- and 4-dimensional topology.Theta Functions and Knots can be read in two perspectives. Readers with an interest in theta functions or knot theory can learn how the two are related. Those interested in Chern-Simons theory will find here an introduction using the simplest case, that of abelian Chern-Simons theory. Moreover, the construction of abelian Chern-Simons theory is based entirely on quantum mechanics and not on quantum field theory as it is usually done.Both the theory of theta functions and low dimensional topology are presented in detail, in order to underline how deep the connection between these two fundamental mathematical subjects is. Hence the book is self-contained with a unified presentation. It is suitable for an advanced graduate course, as well as for self-study.
Book Synopsis Symmetry And Structural Properties Of Condensed Matter, Proceedings Of The 2nd International School Of Theoretical Physics by : Wojciech Florek
Download or read book Symmetry And Structural Properties Of Condensed Matter, Proceedings Of The 2nd International School Of Theoretical Physics written by Wojciech Florek and published by World Scientific. This book was released on 1993-03-27 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings review the recent developments in current research connected with an adequate description of condensed matter in statistics of quasiparticles, topological invariants and self-similar structures.
Book Synopsis The Influence of Solomon Lefschetz in Geometry and Topology by : Ernesto Lupercio
Download or read book The Influence of Solomon Lefschetz in Geometry and Topology written by Ernesto Lupercio and published by American Mathematical Soc.. This book was released on 2014-08-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: The influence of Solomon Lefschetz (1884-1972) in geometry and topology 40 years after his death has been very profound. Lefschetz's influence in Mexican mathematics has been even greater. In this volume, celebrating 50 years of mathematics at Cinvestav-México, many of the fields of geometry and topology are represented by some of the leaders of their respective fields. This volume opens with Michael Atiyah reminiscing about his encounters with Lefschetz and México. Topics covered in this volume include symplectic flexibility, Chern-Simons theory and the theory of classical theta functions, toric topology, the Beilinson conjecture for finite-dimensional associative algebras, partial monoids and Dold-Thom functors, the weak b-principle, orbit configuration spaces, equivariant extensions of differential forms for noncompact Lie groups, dynamical systems and categories, and the Nahm pole boundary condition.
Book Synopsis Knots, Low-Dimensional Topology and Applications by : Colin C. Adams
Download or read book Knots, Low-Dimensional Topology and Applications written by Colin C. Adams and published by Springer. This book was released on 2019-06-26 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: This proceedings volume presents a diverse collection of high-quality, state-of-the-art research and survey articles written by top experts in low-dimensional topology and its applications. The focal topics include the wide range of historical and contemporary invariants of knots and links and related topics such as three- and four-dimensional manifolds, braids, virtual knot theory, quantum invariants, braids, skein modules and knot algebras, link homology, quandles and their homology; hyperbolic knots and geometric structures of three-dimensional manifolds; the mechanism of topological surgery in physical processes, knots in Nature in the sense of physical knots with applications to polymers, DNA enzyme mechanisms, and protein structure and function. The contents is based on contributions presented at the International Conference on Knots, Low-Dimensional Topology and Applications – Knots in Hellas 2016, which was held at the International Olympic Academy in Greece in July 2016. The goal of the international conference was to promote the exchange of methods and ideas across disciplines and generations, from graduate students to senior researchers, and to explore fundamental research problems in the broad fields of knot theory and low-dimensional topology. This book will benefit all researchers who wish to take their research in new directions, to learn about new tools and methods, and to discover relevant and recent literature for future study.
Book Synopsis Loops, Knots, Gauge Theories by : Rodolfo Gambini
Download or read book Loops, Knots, Gauge Theories written by Rodolfo Gambini and published by Cambridge University Press. This book was released on 2023-01-31 with total page 341 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides a self-contained introduction to applications of loop representations in particle physics and quantum gravity, in order to explore the gauge invariant quantization of Yang-Mills theories and gravity. First published in 1996, this title has been reissued as an Open Access publication on Cambridge Core.
Book Synopsis Harmonic Maass Forms and Mock Modular Forms: Theory and Applications by : Kathrin Bringmann
Download or read book Harmonic Maass Forms and Mock Modular Forms: Theory and Applications written by Kathrin Bringmann and published by American Mathematical Soc.. This book was released on 2017-12-15 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modular forms and Jacobi forms play a central role in many areas of mathematics. Over the last 10–15 years, this theory has been extended to certain non-holomorphic functions, the so-called “harmonic Maass forms”. The first glimpses of this theory appeared in Ramanujan's enigmatic last letter to G. H. Hardy written from his deathbed. Ramanujan discovered functions he called “mock theta functions” which over eighty years later were recognized as pieces of harmonic Maass forms. This book contains the essential features of the theory of harmonic Maass forms and mock modular forms, together with a wide variety of applications to algebraic number theory, combinatorics, elliptic curves, mathematical physics, quantum modular forms, and representation theory.
Book Synopsis Survey on Knot Theory by : Akio Kawauchi
Download or read book Survey on Knot Theory written by Akio Kawauchi and published by Springer Science & Business Media. This book was released on 1996-09-26 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knot theory is a rapidly developing field of research with many applications not only for mathematics. The present volume, written by a well-known specialist, gives a complete survey of knot theory from its very beginnings to today's most recent research results. The topics include Alexander polynomials, Jones type polynomials, and Vassiliev invariants. With its appendix containing many useful tables and an extended list of references with over 3,500 entries it is an indispensable book for everyone concerned with knot theory. The book can serve as an introduction to the field for advanced undergraduate and graduate students. Also researchers working in outside areas such as theoretical physics or molecular biology will benefit from this thorough study which is complemented by many exercises and examples.
Book Synopsis Quantum Invariants of Knots and 3-Manifolds by : Vladimir G. Turaev
Download or read book Quantum Invariants of Knots and 3-Manifolds written by Vladimir G. Turaev and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-07-11 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the strong appeal and wide use of this monograph, it is now available in its third revised edition. The monograph gives a systematic treatment of 3-dimensional topological quantum field theories (TQFTs) based on the work of the author with N. Reshetikhin and O. Viro. This subject was inspired by the discovery of the Jones polynomial of knots and the Witten-Chern-Simons field theory. On the algebraic side, the study of 3-dimensional TQFTs has been influenced by the theory of braided categories and the theory of quantum groups. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFTs and 2-dimensional modular functors from so-called modular categories. This gives a vast class of knot invariants and 3-manifold invariants as well as a class of linear representations of the mapping class groups of surfaces. In Part II the technique of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFTs constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and skein modules of tangles in the 3-space. This fundamental contribution to topological quantum field theory is accessible to graduate students in mathematics and physics with knowledge of basic algebra and topology. It is an indispensable source for everyone who wishes to enter the forefront of this fascinating area at the borderline of mathematics and physics. Contents: Invariants of graphs in Euclidean 3-space and of closed 3-manifolds Foundations of topological quantum field theory Three-dimensional topological quantum field theory Two-dimensional modular functors 6j-symbols Simplicial state sums on 3-manifolds Shadows of manifolds and state sums on shadows Constructions of modular categories
Book Synopsis Statistics of Knots and Entangled Random Walks by : Sergei K. Nechaev
Download or read book Statistics of Knots and Entangled Random Walks written by Sergei K. Nechaev and published by World Scientific. This book was released on 1996 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the author announces the class of problems called ?entropy of knots? and gives an overview of modern physical applications of existing topological invariants.He constructs statistical models on knot diagrams and braids using the representations of Jones-Kauffman and Alexander invariants and puts forward the question of limit distribution of these invariants for randomly generated knots. The relation of powers of corresponding algebraic invariants to the Lyapunov exponents of the products of noncommutative matrices is described. Also the problem of conditional joint limit distributions for ?brownian bridges? on braids is discussed. Special cases of noncommutative groups PSL(2, R), PSL(2, Z) and braid groups are considered in detail.In this volume, the author also discusses the application of conformal methods for explicit construction of topological invariants for random walks on multiconnected manifolds. The construction of these topological invariants and the monodromy properties of correlation function of some conformal theories are also discussed.The author also considers the physical applications of ?knot entropy? problem in various physical systems, focussing on polymer
Book Synopsis Quantum Invariants by : Tomotada Ohtsuki
Download or read book Quantum Invariants written by Tomotada Ohtsuki and published by World Scientific. This book was released on 2002 with total page 508 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The Chern-Simons field theory and the Wess-Zumino-Witten model are described as the physical background of the invariants.
Book Synopsis Braid Group, Knot Theory And Statistical Mechanics Ii by : Chen Ning Yang
Download or read book Braid Group, Knot Theory And Statistical Mechanics Ii written by Chen Ning Yang and published by World Scientific. This book was released on 1994-02-24 with total page 479 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present volume is an updated version of the book edited by C N Yang and M L Ge on the topics of braid groups and knot theory, which are related to statistical mechanics. This book is based on the 1989 volume but has new material included and new contributors.
Book Synopsis Likelihood Methods in Survival Analysis by : Jun Ma
Download or read book Likelihood Methods in Survival Analysis written by Jun Ma and published by CRC Press. This book was released on 2024-10-01 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many conventional survival analysis methods, such as the Kaplan-Meier method for survival function estimation and the partial likelihood method for Cox model regression coefficients estimation, were developed under the assumption that survival times are subject to right censoring only. However, in practice, survival time observations may include interval-censored data, especially when the exact time of the event of interest cannot be observed. When interval-censored observations are present in a survival dataset, one generally needs to consider likelihood-based methods for inference. If the survival model under consideration is fully parametric, then likelihood-based methods impose neither theoretical nor computational challenges. However, if the model is semi-parametric, there will be difficulties in both theoretical and computational aspects. Likelihood Methods in Survival Analysis: With R Examples explores these challenges and provides practical solutions. It not only covers conventional Cox models where survival times are subject to interval censoring, but also extends to more complicated models, such as stratified Cox models, extended Cox models where time-varying covariates are present, mixture cure Cox models, and Cox models with dependent right censoring. The book also discusses non-Cox models, particularly the additive hazards model and parametric log-linear models for bivariate survival times where there is dependence among competing outcomes. Features Provides a broad and accessible overview of likelihood methods in survival analysis Covers a wide range of data types and models, from the semi-parametric Cox model with interval censoring through to parametric survival models for competing risks Includes many examples using real data to illustrate the methods Includes integrated R code for implementation of the methods Supplemented by a GitHub repository with datasets and R code The book will make an ideal reference for researchers and graduate students of biostatistics, statistics, and data science, whose interest in survival analysis extend beyond applications. It offers useful and solid training to those who wish to enhance their knowledge in the methodology and computational aspects of biostatistics.
Book Synopsis Grid Homology for Knots and Links by : Peter S. Ozsváth
Download or read book Grid Homology for Knots and Links written by Peter S. Ozsváth and published by American Mathematical Soc.. This book was released on 2015-12-04 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knot theory is a classical area of low-dimensional topology, directly connected with the theory of three-manifolds and smooth four-manifold topology. In recent years, the subject has undergone transformative changes thanks to its connections with a number of other mathematical disciplines, including gauge theory; representation theory and categorification; contact geometry; and the theory of pseudo-holomorphic curves. Starting from the combinatorial point of view on knots using their grid diagrams, this book serves as an introduction to knot theory, specifically as it relates to some of the above developments. After a brief overview of the background material in the subject, the book gives a self-contained treatment of knot Floer homology from the point of view of grid diagrams. Applications include computations of the unknotting number and slice genus of torus knots (asked first in the 1960s and settled in the 1990s), and tools to study variants of knot theory in the presence of a contact structure. Additional topics are presented to prepare readers for further study in holomorphic methods in low-dimensional topology, especially Heegaard Floer homology. The book could serve as a textbook for an advanced undergraduate or part of a graduate course in knot theory. Standard background material is sketched in the text and the appendices.
Book Synopsis Abelian Varieties, Theta Functions and the Fourier Transform by : Alexander Polishchuk
Download or read book Abelian Varieties, Theta Functions and the Fourier Transform written by Alexander Polishchuk and published by Cambridge University Press. This book was released on 2003-04-21 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.
Book Synopsis A Brief Introduction to Theta Functions by : Richard Bellman
Download or read book A Brief Introduction to Theta Functions written by Richard Bellman and published by Courier Corporation. This book was released on 2013-01-01 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published: New York: Rinehart and Winston, 1961.
Book Synopsis Energy of Knots and Conformal Geometry by : Jun O'Hara
Download or read book Energy of Knots and Conformal Geometry written by Jun O'Hara and published by World Scientific. This book was released on 2003 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Energy of knots is a theory that was introduced to create a "canonical configuration" of a knot - a beautiful knot which represents its knot type. This book introduces several kinds of energies, and studies the problem of whether or not there is a "canonical configuration" of a knot in each knot type. It also considers this problem in the context of conformal geometry. The energies presented in the book are defined geometrically. They measure the complexity of embeddings and have applications to physical knotting and unknotting thorough numerical experiments.