Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
The Oxford Handbook Of Nonlinear Filtering
Download The Oxford Handbook Of Nonlinear Filtering full books in PDF, epub, and Kindle. Read online The Oxford Handbook Of Nonlinear Filtering ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Oxford Handbook of Nonlinear Filtering by : Dan Crisan
Download or read book The Oxford Handbook of Nonlinear Filtering written by Dan Crisan and published by OUP Oxford. This book was released on 2011-02-17 with total page 1080 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, interdisciplinary resource for nonlinear (or stochastic) filtering, this Handbook explores the classical theory, the recent advances, and the application of nonlinear filtering to mathematical finance. With contributions from 58 leading experts, it will prove invaluable to anyone working in, or wishing to know more about, the area.
Book Synopsis Nonlinear Filters by : Peyman Setoodeh
Download or read book Nonlinear Filters written by Peyman Setoodeh and published by John Wiley & Sons. This book was released on 2022-03-04 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: NONLINEAR FILTERS Discover the utility of using deep learning and (deep) reinforcement learning in deriving filtering algorithms with this insightful and powerful new resource Nonlinear Filters: Theory and Applications delivers an insightful view on state and parameter estimation by merging ideas from control theory, statistical signal processing, and machine learning. Taking an algorithmic approach, the book covers both classic and machine learning-based filtering algorithms. Readers of Nonlinear Filters will greatly benefit from the wide spectrum of presented topics including stability, robustness, computability, and algorithmic sufficiency. Readers will also enjoy: Organization that allows the book to act as a stand-alone, self-contained reference A thorough exploration of the notion of observability, nonlinear observers, and the theory of optimal nonlinear filtering that bridges the gap between different science and engineering disciplines A profound account of Bayesian filters including Kalman filter and its variants as well as particle filter A rigorous derivation of the smooth variable structure filter as a predictor-corrector estimator formulated based on a stability theorem, used to confine the estimated states within a neighborhood of their true values A concise tutorial on deep learning and reinforcement learning A detailed presentation of the expectation maximization algorithm and its machine learning-based variants, used for joint state and parameter estimation Guidelines for constructing nonparametric Bayesian models from parametric ones Perfect for researchers, professors, and graduate students in engineering, computer science, applied mathematics, and artificial intelligence, Nonlinear Filters: Theory and Applications will also earn a place in the libraries of those studying or practicing in fields involving pandemic diseases, cybersecurity, information fusion, augmented reality, autonomous driving, urban traffic network, navigation and tracking, robotics, power systems, hybrid technologies, and finance.
Book Synopsis Nonlinear Filters by : Sueo Sugimoto
Download or read book Nonlinear Filters written by Sueo Sugimoto and published by Ohmsha, Ltd.. This book was released on 2020-12-10 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a broad range of filter theories, algorithms, and numerical examples. The representative linear and nonlinear filters such as the Kalman filter, the steady-state Kalman filter, the H infinity filter, the extended Kalman filter, the Gaussian sum filter, the statistically linearized Kalman filter, the unscented Kalman filter, the Gaussian filter, the cubature Kalman filter are first visited. Then, the non-Gaussian filters such as the ensemble Kalman filter and the particle filters based on the sequential Bayesian filter and the sequential importance resampling are described, together with their recent advances. Moreover, the information matrix in the nonlinear filtering, the nonlinear smoother based on the Markov Chain Monte Carlo, the continuous-discrete filters, factorized filters, and nonlinear filters based on stochastic approximation method are detailed. 1 Review of the Kalman Filter and Related Filters 2 Information Matrix in Nonlinear Filtering 3 Extended Kalman Filter and Gaussian Sum Filter 4 Statistically Linearized Kalman Filter 5 The Unscented Kalman Filter 6 General Gaussian Filters and Applications 7 The Ensemble Kalman Filter 8 Particle Filter 9 Nonlinear Smoother with Markov Chain Monte Carlo 10 Continuous-Discrete Filters 11 Factorized Filters 12 Nonlinear Filters Based on Stochastic Approximation Method
Book Synopsis Nonlinear Filtering and Optimal Phase Tracking by : Zeev Schuss
Download or read book Nonlinear Filtering and Optimal Phase Tracking written by Zeev Schuss and published by Springer Science & Business Media. This book was released on 2011-11-16 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an analytical rather than measure-theoretical approach to the derivation of the partial differential equations of nonlinear filtering theory. The basis for this approach is the discrete numerical scheme used in Monte-Carlo simulations of stochastic differential equations and Wiener's associated path integral representation of the transition probability density. Furthermore, it presents analytical methods for constructing asymptotic approximations to their solution and for synthesizing asymptotically optimal filters. It also offers a new approach to the phase tracking problem, based on optimizing the mean time to loss of lock. The book is based on lecture notes from a one-semester special topics course on stochastic processes and their applications that the author taught many times to graduate students of mathematics, applied mathematics, physics, chemistry, computer science, electrical engineering, and other disciplines. The book contains exercises and worked-out examples aimed at illustrating the methods of mathematical modeling and performance analysis of phase trackers.
Book Synopsis Grid-based Nonlinear Estimation and Its Applications by : Bin Jia
Download or read book Grid-based Nonlinear Estimation and Its Applications written by Bin Jia and published by CRC Press. This book was released on 2019-04-25 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: Grid-based Nonlinear Estimation and its Applications presents new Bayesian nonlinear estimation techniques developed in the last two decades. Grid-based estimation techniques are based on efficient and precise numerical integration rules to improve performance of the traditional Kalman filtering based estimation for nonlinear and uncertainty dynamic systems. The unscented Kalman filter, Gauss-Hermite quadrature filter, cubature Kalman filter, sparse-grid quadrature filter, and many other numerical grid-based filtering techniques have been introduced and compared in this book. Theoretical analysis and numerical simulations are provided to show the relationships and distinct features of different estimation techniques. To assist the exposition of the filtering concept, preliminary mathematical review is provided. In addition, rather than merely considering the single sensor estimation, multiple sensor estimation, including the centralized and decentralized estimation, is included. Different decentralized estimation strategies, including consensus, diffusion, and covariance intersection, are investigated. Diverse engineering applications, such as uncertainty propagation, target tracking, guidance, navigation, and control, are presented to illustrate the performance of different grid-based estimation techniques.
Book Synopsis Inference and Learning from Data by : Ali H. Sayed
Download or read book Inference and Learning from Data written by Ali H. Sayed and published by Cambridge University Press. This book was released on 2022-11-30 with total page 1165 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover techniques for inferring unknown variables and quantities with the second volume of this extraordinary three-volume set.
Book Synopsis Current Trends in Bayesian Methodology with Applications by : Satyanshu K. Upadhyay
Download or read book Current Trends in Bayesian Methodology with Applications written by Satyanshu K. Upadhyay and published by CRC Press. This book was released on 2015-05-21 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collecting Bayesian material scattered throughout the literature, Current Trends in Bayesian Methodology with Applications examines the latest methodological and applied aspects of Bayesian statistics. The book covers biostatistics, econometrics, reliability and risk analysis, spatial statistics, image analysis, shape analysis, Bayesian computation, clustering, uncertainty assessment, high-energy astrophysics, neural networking, fuzzy information, objective Bayesian methodologies, empirical Bayes methods, small area estimation, and many more topics. Each chapter is self-contained and focuses on a Bayesian methodology. It gives an overview of the area, presents theoretical insights, and emphasizes applications through motivating examples. This book reflects the diversity of Bayesian analysis, from novel Bayesian methodology, such as nonignorable response and factor analysis, to state-of-the-art applications in economics, astrophysics, biomedicine, oceanography, and other areas. It guides readers in using Bayesian techniques for a range of statistical analyses.
Book Synopsis Conceptual Econometrics Using R by :
Download or read book Conceptual Econometrics Using R written by and published by Elsevier. This book was released on 2019-08-20 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conceptual Econometrics Using R, Volume 41 provides state-of-the-art information on important topics in econometrics, including quantitative game theory, multivariate GARCH, stochastic frontiers, fractional responses, specification testing and model selection, exogeneity testing, causal analysis and forecasting, GMM models, asset bubbles and crises, corporate investments, classification, forecasting, nonstandard problems, cointegration, productivity and financial market jumps and co-jumps, among others. - Presents chapters authored by distinguished, honored researchers who have received awards from the Journal of Econometrics or the Econometric Society - Includes descriptions and links to resources and free open source R, allowing readers to not only use the tools on their own data, but also jumpstart their understanding of the state-of-the-art
Book Synopsis Computer Network Security by : Jacek Rak
Download or read book Computer Network Security written by Jacek Rak and published by Springer. This book was released on 2017-08-10 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 7th International Conference on Mathematical Methods, Models, and Architectures for Computer Network Security, MMM-ACNS 2017, held in Warsaw, Poland, in August 2017. The 12 revised full papers, 13 revised short presentations, and 3 invited papers were carefully reviewed and selected from a total of 40 submissions. The papers are organized in topical sections on Critical Infrastructure Protection and Visualization; Security and Resilience of Network Systems; Adaptive Security; Anti-malware Techniques: Detection, Analysis, Prevention; Security of Emerging Technologies; Applied Cryptography; New Ideas and Paradigms for Security.
Book Synopsis Probabilistic modeling for sensor fusion with inertial measurements by : Manon Kok
Download or read book Probabilistic modeling for sensor fusion with inertial measurements written by Manon Kok and published by Linköping University Electronic Press. This book was released on 2016-12-15 with total page 73 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, inertial sensors have undergone major developments. The quality of their measurements has improved while their cost has decreased, leading to an increase in availability. They can be found in stand-alone sensor units, so-called inertial measurement units, but are nowadays also present in for instance any modern smartphone, in Wii controllers and in virtual reality headsets. The term inertial sensor refers to the combination of accelerometers and gyroscopes. These measure the external specific force and the angular velocity, respectively. Integration of their measurements provides information about the sensor's position and orientation. However, the position and orientation estimates obtained by simple integration suffer from drift and are therefore only accurate on a short time scale. In order to improve these estimates, we combine the inertial sensors with additional sensors and models. To combine these different sources of information, also called sensor fusion, we make use of probabilistic models to take the uncertainty of the different sources of information into account. The first contribution of this thesis is a tutorial paper that describes the signal processing foundations underlying position and orientation estimation using inertial sensors. In a second contribution, we use data from multiple inertial sensors placed on the human body to estimate the body's pose. A biomechanical model encodes the knowledge about how the different body segments are connected to each other. We also show how the structure inherent to this problem can be exploited. This opens up for processing long data sets and for solving the problem in a distributed manner. Inertial sensors can also be combined with time of arrival measurements from an ultrawideband (UWB) system. We focus both on calibration of the UWB setup and on sensor fusion of the inertial and UWB measurements. The UWB measurements are modeled by a tailored heavy-tailed asymmetric distribution. This distribution naturally handles the possibility of measurement delays due to multipath and non-line-of-sight conditions while not allowing for the possibility of measurements arriving early, i.e. traveling faster than the speed of light. Finally, inertial sensors can be combined with magnetometers. We derive an algorithm that can calibrate a magnetometer for the presence of metallic objects attached to the sensor. Furthermore, the presence of metallic objects in the environment can be exploited by using them as a source of position information. We present a method to build maps of the indoor magnetic field and experimentally show that if a map of the magnetic field is available, accurate position estimates can be obtained by combining inertial and magnetometer measurements.
Book Synopsis Partially Observed Markov Decision Processes by : Vikram Krishnamurthy
Download or read book Partially Observed Markov Decision Processes written by Vikram Krishnamurthy and published by Cambridge University Press. This book was released on 2016-03-21 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Covering formulation, algorithms, and structural results, and linking theory to real-world applications in controlled sensing (including social learning, adaptive radars and sequential detection), this book focuses on the conceptual foundations of partially observed Markov decision processes (POMDPs). It emphasizes structural results in stochastic dynamic programming, enabling graduate students and researchers in engineering, operations research, and economics to understand the underlying unifying themes without getting weighed down by mathematical technicalities. Bringing together research from across the literature, the book provides an introduction to nonlinear filtering followed by a systematic development of stochastic dynamic programming, lattice programming and reinforcement learning for POMDPs. Questions addressed in the book include: when does a POMDP have a threshold optimal policy? When are myopic policies optimal? How do local and global decision makers interact in adaptive decision making in multi-agent social learning where there is herding and data incest? And how can sophisticated radars and sensors adapt their sensing in real time?
Book Synopsis Natural Computing in Computational Finance by : Anthony Brabazon
Download or read book Natural Computing in Computational Finance written by Anthony Brabazon and published by Springer. This book was released on 2011-10-14 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book follows on from Natural Computing in Computational Finance Volumes I, II and III. As in the previous volumes of this series, the book consists of a series of chapters each of which was selected following a rigorous, peer-reviewed, selection process. The chapters illustrate the application of a range of cutting-edge natural computing and agent-based methodologies in computational finance and economics. The applications explored include option model calibration, financial trend reversal detection, enhanced indexation, algorithmic trading, corporate payout determination and agent-based modeling of liquidity costs, and trade strategy adaptation. While describing cutting edge applications, the chapters are written so that they are accessible to a wide audience. Hence, they should be of interest to academics, students and practitioners in the fields of computational finance and economics. which was selected following a rigorous, peer-reviewed, selection process. The chapters illustrate the application of a range of cutting-edge natural computing and agent-based methodologies in computational finance and economics. The applications explored include option model calibration, financial trend reversal detection, enhanced indexation, algorithmic trading, corporate payout determination and agent-based modeling of liquidity costs, and trade strategy adaptation. While describing cutting edge applications, the chapters are written so that they are accessible to a wide audience. Hence, they should be of interest to academics, students and practitioners in the fields of computational finance and economics. The applications explored include option model calibration, financial trend reversal detection, enhanced indexation, algorithmic trading, corporate payout determination and agent-based modeling of liquidity costs, and trade strategy adaptation. While describing cutting edge applications, the chapters are written so that they are accessible to a wide audience. Hence, they should be of interest to academics, students and practitioners in the fields of computational finance and economics. written so that they are accessible to a wide audience. Hence, they should be of interest to academics, students and practitioners in the fields of computational finance and economics.
Book Synopsis Data Science and Risk Analytics in Finance and Insurance by : Tze Leung Lai
Download or read book Data Science and Risk Analytics in Finance and Insurance written by Tze Leung Lai and published by CRC Press. This book was released on 2024-10-02 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents statistics and data science methods for risk analytics in quantitative finance and insurance. Part I covers the background, financial models, and data analytical methods for market risk, credit risk, and operational risk in financial instruments, as well as models of risk premium and insolvency in insurance contracts. Part II provides an overview of machine learning (including supervised, unsupervised, and reinforcement learning), Monte Carlo simulation, and sequential analysis techniques for risk analytics. In Part III, the book offers a non-technical introduction to four key areas in financial technology: artificial intelligence, blockchain, cloud computing, and big data analytics. Key Features: Provides a comprehensive and in-depth overview of data science methods for financial and insurance risks. Unravels bandits, Markov decision processes, reinforcement learning, and their interconnections. Promotes sequential surveillance and predictive analytics for abrupt changes in risk factors. Introduces the ABCDs of FinTech: Artificial intelligence, blockchain, cloud computing, and big data analytics. Includes supplements and exercises to facilitate deeper comprehension.
Book Synopsis Mathematical Tools for Physicists by : Michael Grinfeld
Download or read book Mathematical Tools for Physicists written by Michael Grinfeld and published by John Wiley & Sons. This book was released on 2015-01-12 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: The new edition is significantly updated and expanded. This unique collection of review articles, ranging from fundamental concepts up to latest applications, contains individual contributions written by renowned experts in the relevant fields. Much attention is paid to ensuring fast access to the information, with each carefully reviewed article featuring cross-referencing, references to the most relevant publications in the field, and suggestions for further reading, both introductory as well as more specialized. While the chapters on group theory, integral transforms, Monte Carlo methods, numerical analysis, perturbation theory, and special functions are thoroughly rewritten, completely new content includes sections on commutative algebra, computational algebraic topology, differential geometry, dynamical systems, functional analysis, graph and network theory, PDEs of mathematical physics, probability theory, stochastic differential equations, and variational methods.
Book Synopsis Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Second Edition by : Paul D. Groves
Download or read book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Second Edition written by Paul D. Groves and published by Artech House. This book was released on 2013-04-01 with total page 800 pages. Available in PDF, EPUB and Kindle. Book excerpt: This newly revised and greatly expanded edition of the popular Artech House book Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems offers you a current and comprehensive understanding of satellite navigation, inertial navigation, terrestrial radio navigation, dead reckoning, and environmental feature matching . It provides both an introduction to navigation systems and an in-depth treatment of INS/GNSS and multisensor integration. The second edition offers a wealth of added and updated material, including a brand new chapter on the principles of radio positioning and a chapter devoted to important applications in the field. Other updates include expanded treatments of map matching, image-based navigation, attitude determination, acoustic positioning, pedestrian navigation, advanced GNSS techniques, and several terrestrial and short-range radio positioning technologies .. The book shows you how satellite, inertial, and other navigation technologies work, and focuses on processing chains and error sources. In addition, you get a clear introduction to coordinate frames, multi-frame kinematics, Earth models, gravity, Kalman filtering, and nonlinear filtering. Providing solutions to common integration problems, the book describes and compares different integration architectures, and explains how to model different error sources. You get a broad and penetrating overview of current technology and are brought up to speed with the latest developments in the field, including context-dependent and cooperative positioning.
Book Synopsis A Guided Tour of Artificial Intelligence Research by : Pierre Marquis
Download or read book A Guided Tour of Artificial Intelligence Research written by Pierre Marquis and published by Springer Nature. This book was released on 2020-05-08 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to provide an overview of AI research, ranging from basic work to interfaces and applications, with as much emphasis on results as on current issues. It is aimed at an audience of master students and Ph.D. students, and can be of interest as well for researchers and engineers who want to know more about AI. The book is split into three volumes: - the first volume brings together twenty-three chapters dealing with the foundations of knowledge representation and the formalization of reasoning and learning (Volume 1. Knowledge representation, reasoning and learning) - the second volume offers a view of AI, in fourteen chapters, from the side of the algorithms (Volume 2. AI Algorithms) - the third volume, composed of sixteen chapters, describes the main interfaces and applications of AI (Volume 3. Interfaces and applications of AI). Implementing reasoning or decision making processes requires an appropriate representation of the pieces of information to be exploited. This first volume starts with a historical chapter sketching the slow emergence of building blocks of AI along centuries. Then the volume provides an organized overview of different logical, numerical, or graphical representation formalisms able to handle incomplete information, rules having exceptions, probabilistic and possibilistic uncertainty (and beyond), as well as taxonomies, time, space, preferences, norms, causality, and even trust and emotions among agents. Different types of reasoning, beyond classical deduction, are surveyed including nonmonotonic reasoning, belief revision, updating, information fusion, reasoning based on similarity (case-based, interpolative, or analogical), as well as reasoning about actions, reasoning about ontologies (description logics), argumentation, and negotiation or persuasion between agents. Three chapters deal with decision making, be it multiple criteria, collective, or under uncertainty. Two chapters cover statistical computational learning and reinforcement learning (other machine learning topics are covered in Volume 2). Chapters on diagnosis and supervision, validation and explanation, and knowledge base acquisition complete the volume.
Book Synopsis The Oxford Handbook of Computational Economics and Finance by : Shu-Heng Chen
Download or read book The Oxford Handbook of Computational Economics and Finance written by Shu-Heng Chen and published by Oxford University Press. This book was released on 2018-01-12 with total page 785 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Oxford Handbook of Computational Economics and Finance provides a survey of both the foundations of and recent advances in the frontiers of analysis and action. It is both historically and interdisciplinarily rich and also tightly connected to the rise of digital society. It begins with the conventional view of computational economics, including recent algorithmic development in computing rational expectations, volatility, and general equilibrium. It then moves from traditional computing in economics and finance to recent developments in natural computing, including applications of nature-inspired intelligence, genetic programming, swarm intelligence, and fuzzy logic. Also examined are recent developments of network and agent-based computing in economics. How these approaches are applied is examined in chapters on such subjects as trading robots and automated markets. The last part deals with the epistemology of simulation in its trinity form with the integration of simulation, computation, and dynamics. Distinctive is the focus on natural computationalism and the examination of the implications of intelligent machines for the future of computational economics and finance. Not merely individual robots, but whole integrated systems are extending their "immigration" to the world of Homo sapiens, or symbiogenesis.