The "Orange" Model of Data Management

Download The

Author :
Publisher :
ISBN 13 : 9781701504745
Total Pages : 24 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis The "Orange" Model of Data Management by : Irina Steenbeek

Download or read book The "Orange" Model of Data Management written by Irina Steenbeek and published by . This book was released on 2019-10-21 with total page 24 pages. Available in PDF, EPUB and Kindle. Book excerpt: *This book is a brief overview of the model and has only 24 pages.*Almost every data management professional, at some point in their career, has come across the following crucial questions:1. Which industry reference model should I use for the implementation of data managementfunctions?2. What are the key data management capabilities that are feasible and applicable to my company?3. How do I measure the maturity of the data management functions and compare that withthose of my peers in the industry4. What are the critical, logical steps in the implementation of data management?The "Orange" (meta)model of data management provides a collection of techniques and templates for the practical set up of data management through the design and implementation of the data and information value chain, enabled by a set of data management capabilities.This book is a toolkit for advanced data management professionals and consultants thatare involved in the data management function implementation.This book works together with the earlier published "The Data Management Toolkit". The "Orange" model assists in specifying the feasible scope of data management capabilities, that fits company's business goals and resources. "The Data Management Toolkit" is a practical implementation guide of the chosen data management capabilities.

DAMA-DMBOK

Download DAMA-DMBOK PDF Online Free

Author :
Publisher :
ISBN 13 : 9781634622349
Total Pages : 628 pages
Book Rating : 4.6/5 (223 download)

DOWNLOAD NOW!


Book Synopsis DAMA-DMBOK by : Dama International

Download or read book DAMA-DMBOK written by Dama International and published by . This book was released on 2017 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.

Data Management for Researchers

Download Data Management for Researchers PDF Online Free

Author :
Publisher : Pelagic Publishing Ltd
ISBN 13 : 178427013X
Total Pages : 312 pages
Book Rating : 4.7/5 (842 download)

DOWNLOAD NOW!


Book Synopsis Data Management for Researchers by : Kristin Briney

Download or read book Data Management for Researchers written by Kristin Briney and published by Pelagic Publishing Ltd. This book was released on 2015-09-01 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. "An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline." —Robert Buntrock, Chemical Information Bulletin

The Data Management Toolkit: A Step-By-Step Implementation Guide for the Pioneers of Data Management

Download The Data Management Toolkit: A Step-By-Step Implementation Guide for the Pioneers of Data Management PDF Online Free

Author :
Publisher : Independently Published
ISBN 13 : 9781793918994
Total Pages : 216 pages
Book Rating : 4.9/5 (189 download)

DOWNLOAD NOW!


Book Synopsis The Data Management Toolkit: A Step-By-Step Implementation Guide for the Pioneers of Data Management by : Irina Steenbeek

Download or read book The Data Management Toolkit: A Step-By-Step Implementation Guide for the Pioneers of Data Management written by Irina Steenbeek and published by Independently Published. This book was released on 2019-03-09 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Eight years ago, I joined a new company. My first challenge was to develop an automated management accounting reporting system. A deep analysis of the existing reports showed us the high necessity to implement a singular reporting platform, and we opted to implement a data warehouse. At the time, one of the consultants came to me and said, "I heard that we might need data management. I don't know what it is. Check it out." So I started Googling "Data management..".This book is for professionals who are now in the same position I found myself in eight years ago and for those who want to become a data management pro of a medium sized company.It is a collection of hands-on knowledge, experience and observations on how to implement data management in an effective, feasible and "to-the-point" way.

Data Mining: Concepts and Techniques

Download Data Mining: Concepts and Techniques PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0123814804
Total Pages : 740 pages
Book Rating : 4.1/5 (238 download)

DOWNLOAD NOW!


Book Synopsis Data Mining: Concepts and Techniques by : Jiawei Han

Download or read book Data Mining: Concepts and Techniques written by Jiawei Han and published by Elsevier. This book was released on 2011-06-09 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Big Data Management and Processing

Download Big Data Management and Processing PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498768083
Total Pages : 489 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Big Data Management and Processing by : Kuan-Ching Li

Download or read book Big Data Management and Processing written by Kuan-Ching Li and published by CRC Press. This book was released on 2017-05-19 with total page 489 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the Foreword: "Big Data Management and Processing is [a] state-of-the-art book that deals with a wide range of topical themes in the field of Big Data. The book, which probes many issues related to this exciting and rapidly growing field, covers processing, management, analytics, and applications... [It] is a very valuable addition to the literature. It will serve as a source of up-to-date research in this continuously developing area. The book also provides an opportunity for researchers to explore the use of advanced computing technologies and their impact on enhancing our capabilities to conduct more sophisticated studies." ---Sartaj Sahni, University of Florida, USA "Big Data Management and Processing covers the latest Big Data research results in processing, analytics, management and applications. Both fundamental insights and representative applications are provided. This book is a timely and valuable resource for students, researchers and seasoned practitioners in Big Data fields. --Hai Jin, Huazhong University of Science and Technology, China Big Data Management and Processing explores a range of big data related issues and their impact on the design of new computing systems. The twenty-one chapters were carefully selected and feature contributions from several outstanding researchers. The book endeavors to strike a balance between theoretical and practical coverage of innovative problem solving techniques for a range of platforms. It serves as a repository of paradigms, technologies, and applications that target different facets of big data computing systems. The first part of the book explores energy and resource management issues, as well as legal compliance and quality management for Big Data. It covers In-Memory computing and In-Memory data grids, as well as co-scheduling for high performance computing applications. The second part of the book includes comprehensive coverage of Hadoop and Spark, along with security, privacy, and trust challenges and solutions. The latter part of the book covers mining and clustering in Big Data, and includes applications in genomics, hospital big data processing, and vehicular cloud computing. The book also analyzes funding for Big Data projects.

Smarter Modeling of IBM InfoSphere Master Data Management Solutions

Download Smarter Modeling of IBM InfoSphere Master Data Management Solutions PDF Online Free

Author :
Publisher : IBM Redbooks
ISBN 13 : 0738436801
Total Pages : 596 pages
Book Rating : 4.7/5 (384 download)

DOWNLOAD NOW!


Book Synopsis Smarter Modeling of IBM InfoSphere Master Data Management Solutions by : Jan-Bernd Bracht

Download or read book Smarter Modeling of IBM InfoSphere Master Data Management Solutions written by Jan-Bernd Bracht and published by IBM Redbooks. This book was released on 2012-08-09 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IBM® Redbooks® publication presents a development approach for master data management projects, and in particular, those projects based on IBM InfoSphere® MDM Server. The target audience for this book includes Enterprise Architects, Information, Integration and Solution Architects and Designers, Developers, and Product Managers. Master data management combines a set of processes and tools that defines and manages the non-transactional data entities of an organization. Master data management can provide processes for collecting, consolidating, persisting, and distributing this data throughout an organization. IBM InfoSphere Master Data Management Server creates trusted views of master data that can improve applications and business processes. You can use it to gain control over business information by managing and maintaining a complete and accurate view of master data. You also can use InfoSphere MDM Server to extract maximum value from master data by centralizing multiple data domains. InfoSphere MDM Server provides a comprehensive set of prebuilt business services that support a full range of master data management functionality.

Information Modeling and Relational Databases

Download Information Modeling and Relational Databases PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0443237913
Total Pages : 1086 pages
Book Rating : 4.4/5 (432 download)

DOWNLOAD NOW!


Book Synopsis Information Modeling and Relational Databases by : Terry Halpin

Download or read book Information Modeling and Relational Databases written by Terry Halpin and published by Elsevier. This book was released on 2024-07-22 with total page 1086 pages. Available in PDF, EPUB and Kindle. Book excerpt: Information Modeling and Relational Databases, Third Edition, provides an introduction to ORM (Object-Role Modeling) and much more. In fact, it is the only book to go beyond introductory coverage and provide all of the in-depth instruction you need to transform knowledge from domain experts into a sound database design. This book is intended for anyone with a stake in the accuracy and efficacy of databases: systems analysts, information modelers, database designers and administrators, and programmers. Dr. Terry Halpin and Dr. Tony Morgan, pioneers in the development of ORM, blend conceptual information with practical instruction that will let you begin using ORM effectively as soon as possible. The all-new Third Edition includes coverage of advances and improvements in ORM and UML, nominalization, relational mapping, SQL, XML, data interchange, NoSQL databases, ontological modeling, and post-relational databases. Supported by examples, exercises, and useful background information, the authors' step-by-step approach teaches you to develop a natural-language-based ORM model, and then, where needed, abstract ER and UML models from it. This book will quickly make you proficient in the modeling technique that is proving vital to the development of accurate and efficient databases that best meet real business objectives. "This book is an excellent introduction to both information modeling in ORM and relational databases. The book is very clearly written in a step-by-step manner and contains an abundance of well-chosen examples illuminating practice and theory in information modeling. I strongly recommend this book to anyone interested in conceptual modeling and databases." — Dr. Herman Balsters, Director of the Faculty of Industrial Engineering, University of Groningen, The Netherlands - Presents the most in-depth coverage of object-role modeling, including a thorough update of the book for the latest versions of ORM, ER, UML, OWL, and BPMN modeling. - Includes clear coverage of relational database concepts as well as the latest developments in SQL, XML, information modeling, data exchange, and schema transformation. - Case studies and a large number of class-tested exercises are provided for many topics. - Includes all-new chapters on data file formats and NoSQL databases.

Text Data Management and Analysis

Download Text Data Management and Analysis PDF Online Free

Author :
Publisher : Morgan & Claypool
ISBN 13 : 1970001186
Total Pages : 634 pages
Book Rating : 4.9/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Text Data Management and Analysis by : ChengXiang Zhai

Download or read book Text Data Management and Analysis written by ChengXiang Zhai and published by Morgan & Claypool. This book was released on 2016-06-30 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people analyze and manage vast amounts of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans, and are accompanied by semantically rich content. As such, text data are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. In contrast to structured data, which conform to well-defined schemas (thus are relatively easy for computers to handle), text has less explicit structure, requiring computer processing toward understanding of the content encoded in text. The current technology of natural language processing has not yet reached a point to enable a computer to precisely understand natural language text, but a wide range of statistical and heuristic approaches to analysis and management of text data have been developed over the past few decades. They are usually very robust and can be applied to analyze and manage text data in any natural language, and about any topic. This book provides a systematic introduction to all these approaches, with an emphasis on covering the most useful knowledge and skills required to build a variety of practically useful text information systems. The focus is on text mining applications that can help users analyze patterns in text data to extract and reveal useful knowledge. Information retrieval systems, including search engines and recommender systems, are also covered as supporting technology for text mining applications. The book covers the major concepts, techniques, and ideas in text data mining and information retrieval from a practical viewpoint, and includes many hands-on exercises designed with a companion software toolkit (i.e., MeTA) to help readers learn how to apply techniques of text mining and information retrieval to real-world text data and how to experiment with and improve some of the algorithms for interesting application tasks. The book can be used as a textbook for a computer science undergraduate course or a reference book for practitioners working on relevant problems in analyzing and managing text data.

Data Management, Analytics and Innovation

Download Data Management, Analytics and Innovation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811629374
Total Pages : 530 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Data Management, Analytics and Innovation by : Neha Sharma

Download or read book Data Management, Analytics and Innovation written by Neha Sharma and published by Springer Nature. This book was released on 2021-09-19 with total page 530 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the latest findings in the areas of data management and smart computing, machine learning, big data management, artificial intelligence, and data analytics, along with advances in network technologies. The book is a collection of peer-reviewed research papers presented at Fifth International Conference on Data Management, Analytics and Innovation (ICDMAI 2021), held during January 15–17, 2021, in a virtual mode. It addresses state-of-the-art topics and discusses challenges and solutions for future development. Gathering original, unpublished contributions by scientists from around the globe, the book is mainly intended for a professional audience of researchers and practitioners in academia and industry.

In-Memory Data Management

Download In-Memory Data Management PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642193633
Total Pages : 245 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis In-Memory Data Management by : Hasso Plattner

Download or read book In-Memory Data Management written by Hasso Plattner and published by Springer Science & Business Media. This book was released on 2011-03-08 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last 50 years the world has been completely transformed through the use of IT. We have now reached a new inflection point. Here we present, for the first time, how in-memory computing is changing the way businesses are run. Today, enterprise data is split into separate databases for performance reasons. Analytical data resides in warehouses, synchronized periodically with transactional systems. This separation makes flexible, real-time reporting on current data impossible. Multi-core CPUs, large main memories, cloud computing and powerful mobile devices are serving as the foundation for the transition of enterprises away from this restrictive model. We describe techniques that allow analytical and transactional processing at the speed of thought and enable new ways of doing business. The book is intended for university students, IT-professionals and IT-managers, but also for senior management who wish to create new business processes by leveraging in-memory computing.

Spatial Databases

Download Spatial Databases PDF Online Free

Author :
Publisher : Morgan Kaufmann
ISBN 13 : 9781558605886
Total Pages : 444 pages
Book Rating : 4.6/5 (58 download)

DOWNLOAD NOW!


Book Synopsis Spatial Databases by : Philippe Rigaux

Download or read book Spatial Databases written by Philippe Rigaux and published by Morgan Kaufmann. This book was released on 2002 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors explore and explain current techniques for handling the specialised data that describes geographical phenomena in a study that will be of great value to computer scientists and geographers working with spatial databases.

Data Lineage from a Business Perspective

Download Data Lineage from a Business Perspective PDF Online Free

Author :
Publisher : Independently Published
ISBN 13 :
Total Pages : 242 pages
Book Rating : 4.4/5 (738 download)

DOWNLOAD NOW!


Book Synopsis Data Lineage from a Business Perspective by : Irina Steenbeek

Download or read book Data Lineage from a Business Perspective written by Irina Steenbeek and published by Independently Published. This book was released on 2021-10 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data lineage has become a daily demand. However, data lineage remains an abstract/ unknown concept for many users. The implementation is complex and resource-consuming. Even if implemented, it is not used as expected. This book uncovers different aspects of data lineage for data management and business professionals. It provides the definition and metamodel of data lineage, demonstrates best practices in data lineage implementation, and discusses the key areas of data lineage usage. Several groups of professionals can use this book in different ways: Data management and business professionals can develop ideas about data lineage and its application areas. Professionals with a technical background may gain a better understanding of business needs and requirements for data lineage. Project management professionals can become familiar with the best practices of data lineage implementation.

Big Data Management

Download Big Data Management PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319454986
Total Pages : 274 pages
Book Rating : 4.3/5 (194 download)

DOWNLOAD NOW!


Book Synopsis Big Data Management by : Fausto Pedro García Márquez

Download or read book Big Data Management written by Fausto Pedro García Márquez and published by Springer. This book was released on 2016-11-15 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the analytic principles of business practice and big data. Specifically, it provides an interface between the main disciplines of engineering/technology and the organizational and administrative aspects of management, serving as a complement to books in other disciplines such as economics, finance, marketing and risk analysis. The contributors present their areas of expertise, together with essential case studies that illustrate the successful application of engineering management theories in real-life examples.

The Elements of Big Data Value

Download The Elements of Big Data Value PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030681769
Total Pages : 399 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis The Elements of Big Data Value by : Edward Curry

Download or read book The Elements of Big Data Value written by Edward Curry and published by Springer Nature. This book was released on 2021-08-01 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the foundations of the Big Data research and innovation ecosystem and the associated enablers that facilitate delivering value from data for business and society. It provides insights into the key elements for research and innovation, technical architectures, business models, skills, and best practices to support the creation of data-driven solutions and organizations. The book is a compilation of selected high-quality chapters covering best practices, technologies, experiences, and practical recommendations on research and innovation for big data. The contributions are grouped into four parts: · Part I: Ecosystem Elements of Big Data Value focuses on establishing the big data value ecosystem using a holistic approach to make it attractive and valuable to all stakeholders. · Part II: Research and Innovation Elements of Big Data Value details the key technical and capability challenges to be addressed for delivering big data value. · Part III: Business, Policy, and Societal Elements of Big Data Value investigates the need to make more efficient use of big data and understanding that data is an asset that has significant potential for the economy and society. · Part IV: Emerging Elements of Big Data Value explores the critical elements to maximizing the future potential of big data value. Overall, readers are provided with insights which can support them in creating data-driven solutions, organizations, and productive data ecosystems. The material represents the results of a collective effort undertaken by the European data community as part of the Big Data Value Public-Private Partnership (PPP) between the European Commission and the Big Data Value Association (BDVA) to boost data-driven digital transformation.

Non-Invasive Data Governance

Download Non-Invasive Data Governance PDF Online Free

Author :
Publisher : Technics Publications
ISBN 13 : 1634620453
Total Pages : 147 pages
Book Rating : 4.6/5 (346 download)

DOWNLOAD NOW!


Book Synopsis Non-Invasive Data Governance by : Robert S. Seiner

Download or read book Non-Invasive Data Governance written by Robert S. Seiner and published by Technics Publications. This book was released on 2014-09-01 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve.

A Course in In-Memory Data Management

Download A Course in In-Memory Data Management PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642552706
Total Pages : 315 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis A Course in In-Memory Data Management by : Hasso Plattner

Download or read book A Course in In-Memory Data Management written by Hasso Plattner and published by Springer. This book was released on 2014-05-28 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent achievements in hardware and software development, such as multi-core CPUs and DRAM capacities of multiple terabytes per server, enabled the introduction of a revolutionary technology: in-memory data management. This technology supports the flexible and extremely fast analysis of massive amounts of enterprise data. Professor Hasso Plattner and his research group at the Hasso Plattner Institute in Potsdam, Germany, have been investigating and teaching the corresponding concepts and their adoption in the software industry for years. This book is based on an online course that was first launched in autumn 2012 with more than 13,000 enrolled students and marked the successful starting point of the openHPI e-learning platform. The course is mainly designed for students of computer science, software engineering, and IT related subjects, but addresses business experts, software developers, technology experts, and IT analysts alike. Plattner and his group focus on exploring the inner mechanics of a column-oriented dictionary-encoded in-memory database. Covered topics include - amongst others - physical data storage and access, basic database operators, compression mechanisms, and parallel join algorithms. Beyond that, implications for future enterprise applications and their development are discussed. Step by step, readers will understand the radical differences and advantages of the new technology over traditional row-oriented, disk-based databases. In this completely revised 2nd edition, we incorporate the feedback of thousands of course participants on openHPI and take into account latest advancements in hard- and software. Improved figures, explanations, and examples further ease the understanding of the concepts presented. We introduce advanced data management techniques such as transparent aggregate caches and provide new showcases that demonstrate the potential of in-memory databases for two diverse industries: retail and life sciences.