The Monge—Ampère Equation

Download The Monge—Ampère Equation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780817641771
Total Pages : 148 pages
Book Rating : 4.6/5 (417 download)

DOWNLOAD NOW!


Book Synopsis The Monge—Ampère Equation by : Cristian E. Gutierrez

Download or read book The Monge—Ampère Equation written by Cristian E. Gutierrez and published by Springer Science & Business Media. This book was released on 2001-05-11 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monge-Ampère equation has attracted considerable interest in recent years because of its important role in several areas of applied mathematics. Monge-Ampère type equations have applications in the areas of differential geometry, the calculus of variations, and several optimization problems, such as the Monge-Kantorovitch mass transfer problem. This book stresses the geometric aspects of this beautiful theory, using techniques from harmonic analysis – covering lemmas and set decompositions.

The Monge-Ampère Equation and Its Applications

Download The Monge-Ampère Equation and Its Applications PDF Online Free

Author :
Publisher :
ISBN 13 : 9783037191705
Total Pages : 0 pages
Book Rating : 4.1/5 (917 download)

DOWNLOAD NOW!


Book Synopsis The Monge-Ampère Equation and Its Applications by : Alessio Figalli

Download or read book The Monge-Ampère Equation and Its Applications written by Alessio Figalli and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Monge-Ampere equation is one of the most important partial differential equations, appearing in many problems in analysis and geometry. This monograph is a comprehensive introduction to the existence and regularity theory of the Monge-Ampere equation and some selected applications; the main goal is to provide the reader with a wealth of results and techniques he or she can draw from to understand current research related to this beautiful equation. The presentation is essentially self-contained, with an appendix that contains precise statements of all the results used from different areas (linear algebra, convex geometry, measure theory, nonlinear analysis, and PDEs). This book is intended for graduate students and researchers interested in nonlinear PDEs: explanatory figures, detailed proofs, and heuristic arguments make this book suitable for self-study and also as a reference.

Monge Ampere Equation: Applications to Geometry and Optimization

Download Monge Ampere Equation: Applications to Geometry and Optimization PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821809172
Total Pages : 186 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Monge Ampere Equation: Applications to Geometry and Optimization by : Luis A. Caffarelli

Download or read book Monge Ampere Equation: Applications to Geometry and Optimization written by Luis A. Caffarelli and published by American Mathematical Soc.. This book was released on 1999 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, the Monge Ampère Equation has received attention for its role in several new areas of applied mathematics: as a new method of discretization for evolution equations of classical mechanics, such as the Euler equation, flow in porous media, Hele-Shaw flow, etc.; as a simple model for optimal transportation and a div-curl decomposition with affine invariance; and as a model for front formation in meteorology and optimal antenna design. These applications were addressed and important theoretical advances presented at a NSF-CBMS conference held at Florida Atlantic University (Boca Raton). L. Cafarelli and other distinguished specialists contributed high-quality research results and up-to-date developments in the field. This is a comprehensive volume outlining current directions in nonlinear analysis and its applications.

Contact Geometry and Nonlinear Differential Equations

Download Contact Geometry and Nonlinear Differential Equations PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521824761
Total Pages : 472 pages
Book Rating : 4.5/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Contact Geometry and Nonlinear Differential Equations by : Alexei Kushner

Download or read book Contact Geometry and Nonlinear Differential Equations written by Alexei Kushner and published by Cambridge University Press. This book was released on 2007 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shows novel and modern ways of solving differential equations using methods from contact and symplectic geometry.

Nonlinear partial differential equations in differential geometry

Download Nonlinear partial differential equations in differential geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821804315
Total Pages : 356 pages
Book Rating : 4.8/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear partial differential equations in differential geometry by : Robert Hardt

Download or read book Nonlinear partial differential equations in differential geometry written by Robert Hardt and published by American Mathematical Soc.. This book was released on 1996 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains lecture notes of minicourses at the Regional Geometry Institute at Park City, Utah, in July 1992. Presented here are surveys of breaking developments in a number of areas of nonlinear partial differential equations in differential geometry. The authors of the articles are not only excellent expositors, but are also leaders in this field of research. All of the articles provide in-depth treatment of the topics and require few prerequisites and less background than current research articles.

An Introduction to the Kähler-Ricci Flow

Download An Introduction to the Kähler-Ricci Flow PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319008196
Total Pages : 342 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to the Kähler-Ricci Flow by : Sebastien Boucksom

Download or read book An Introduction to the Kähler-Ricci Flow written by Sebastien Boucksom and published by Springer. This book was released on 2013-10-02 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research. The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.

Hamilton-Jacobi-Bellman Equations

Download Hamilton-Jacobi-Bellman Equations PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110542714
Total Pages : 245 pages
Book Rating : 4.1/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Hamilton-Jacobi-Bellman Equations by : Dante Kalise

Download or read book Hamilton-Jacobi-Bellman Equations written by Dante Kalise and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-08-06 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Optimal feedback control arises in different areas such as aerospace engineering, chemical processing, resource economics, etc. In this context, the application of dynamic programming techniques leads to the solution of fully nonlinear Hamilton-Jacobi-Bellman equations. This book presents the state of the art in the numerical approximation of Hamilton-Jacobi-Bellman equations, including post-processing of Galerkin methods, high-order methods, boundary treatment in semi-Lagrangian schemes, reduced basis methods, comparison principles for viscosity solutions, max-plus methods, and the numerical approximation of Monge-Ampère equations. This book also features applications in the simulation of adaptive controllers and the control of nonlinear delay differential equations. Contents From a monotone probabilistic scheme to a probabilistic max-plus algorithm for solving Hamilton–Jacobi–Bellman equations Improving policies for Hamilton–Jacobi–Bellman equations by postprocessing Viability approach to simulation of an adaptive controller Galerkin approximations for the optimal control of nonlinear delay differential equations Efficient higher order time discretization schemes for Hamilton–Jacobi–Bellman equations based on diagonally implicit symplectic Runge–Kutta methods Numerical solution of the simple Monge–Ampere equation with nonconvex Dirichlet data on nonconvex domains On the notion of boundary conditions in comparison principles for viscosity solutions Boundary mesh refinement for semi-Lagrangian schemes A reduced basis method for the Hamilton–Jacobi–Bellman equation within the European Union Emission Trading Scheme

Topics in Optimal Transportation

Download Topics in Optimal Transportation PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470467267
Total Pages : 370 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Topics in Optimal Transportation by : Cédric Villani

Download or read book Topics in Optimal Transportation written by Cédric Villani and published by American Mathematical Soc.. This book was released on 2021-08-25 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of “optimal transportation” (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.

Nonlinear Elliptic Equations of the Second Order

Download Nonlinear Elliptic Equations of the Second Order PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470426072
Total Pages : 378 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Elliptic Equations of the Second Order by : Qing Han

Download or read book Nonlinear Elliptic Equations of the Second Order written by Qing Han and published by American Mathematical Soc.. This book was released on 2016-04-15 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear elliptic differential equations are a diverse subject with important applications to the physical and social sciences and engineering. They also arise naturally in geometry. In particular, much of the progress in the area in the twentieth century was driven by geometric applications, from the Bernstein problem to the existence of Kähler–Einstein metrics. This book, designed as a textbook, provides a detailed discussion of the Dirichlet problems for quasilinear and fully nonlinear elliptic differential equations of the second order with an emphasis on mean curvature equations and on Monge–Ampère equations. It gives a user-friendly introduction to the theory of nonlinear elliptic equations with special attention given to basic results and the most important techniques. Rather than presenting the topics in their full generality, the book aims at providing self-contained, clear, and “elementary” proofs for results in important special cases. This book will serve as a valuable resource for graduate students or anyone interested in this subject.

Handbook of Geometric Analysis

Download Handbook of Geometric Analysis PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 704 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Geometric Analysis by : Lizhen Ji

Download or read book Handbook of Geometric Analysis written by Lizhen Ji and published by . This book was released on 2008 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Geometric Analysis combines differential equations with differential geometry. An important aspect of geometric analysis is to approach geometric problems by studying differential equations. Besides some known linear differential operators such as the Laplace operator, many differential equations arising from differential geometry are nonlinear. A particularly important example is the Monge-Amperè equation. Applications to geometric problems have also motivated new methods and techniques in differential equations. The field of geometric analysis is broad and has had many striking applications. This handbook of geometric analysis--the first of the two to be published in the ALM series--presents introductions and survey papers treating important topics in geometric analysis, with their applications to related fields. It can be used as a reference by graduate students and by researchers in related areas."--Back cover.

Affine Bernstein Problems and Monge-AmpŠre Equations

Download Affine Bernstein Problems and Monge-AmpŠre Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9812814167
Total Pages : 193 pages
Book Rating : 4.8/5 (128 download)

DOWNLOAD NOW!


Book Synopsis Affine Bernstein Problems and Monge-AmpŠre Equations by : An-Min Li

Download or read book Affine Bernstein Problems and Monge-AmpŠre Equations written by An-Min Li and published by World Scientific. This book was released on 2010 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this monograph, the interplay between geometry and partial differential equations (PDEs) is of particular interest. It gives a selfcontained introduction to research in the last decade concerning global problems in the theory of submanifolds, leading to some types of Monge-AmpFre equations. From the methodical point of view, it introduces the solution of certain Monge-AmpFre equations via geometric modeling techniques. Here geometric modeling means the appropriate choice of a normalization and its induced geometry on a hypersurface defined by a local strongly convex global graph. For a better understanding of the modeling techniques, the authors give a selfcontained summary of relative hypersurface theory, they derive important PDEs (e.g. affine spheres, affine maximal surfaces, and the affine constant mean curvature equation). Concerning modeling techniques, emphasis is on carefully structured proofs and exemplary comparisons between different modelings.

Optimal Transport for Applied Mathematicians

Download Optimal Transport for Applied Mathematicians PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3319208284
Total Pages : 376 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Optimal Transport for Applied Mathematicians by : Filippo Santambrogio

Download or read book Optimal Transport for Applied Mathematicians written by Filippo Santambrogio and published by Birkhäuser. This book was released on 2015-10-17 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a rigorous mathematical introduction to optimal transport as a variational problem, its use in modeling various phenomena, and its connections with partial differential equations. Its main goal is to provide the reader with the techniques necessary to understand the current research in optimal transport and the tools which are most useful for its applications. Full proofs are used to illustrate mathematical concepts and each chapter includes a section that discusses applications of optimal transport to various areas, such as economics, finance, potential games, image processing and fluid dynamics. Several topics are covered that have never been previously in books on this subject, such as the Knothe transport, the properties of functionals on measures, the Dacorogna-Moser flow, the formulation through minimal flows with prescribed divergence formulation, the case of the supremal cost, and the most classical numerical methods. Graduate students and researchers in both pure and applied mathematics interested in the problems and applications of optimal transport will find this to be an invaluable resource.

Degenerate Complex Monge-Ampère Equations

Download Degenerate Complex Monge-Ampère Equations PDF Online Free

Author :
Publisher :
ISBN 13 : 9783037191675
Total Pages : 472 pages
Book Rating : 4.1/5 (916 download)

DOWNLOAD NOW!


Book Synopsis Degenerate Complex Monge-Ampère Equations by : Vincent Guedj

Download or read book Degenerate Complex Monge-Ampère Equations written by Vincent Guedj and published by . This book was released on with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Applied Partial Differential Equations

Download Applied Partial Differential Equations PDF Online Free

Author :
Publisher :
ISBN 13 : 9780198527718
Total Pages : 466 pages
Book Rating : 4.5/5 (277 download)

DOWNLOAD NOW!


Book Synopsis Applied Partial Differential Equations by : J. R. Ockendon

Download or read book Applied Partial Differential Equations written by J. R. Ockendon and published by . This book was released on 2003 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations are used in mathematical models of a huge range of real-world phenomena, from electromagnetism to financial markets. This new edition of Applied PDEs contains many new sections and exercises Including, American options, transform methods, free surface flows, linear elasticity and complex characteristics.

Introduction to Partial Differential Equations with Applications

Download Introduction to Partial Differential Equations with Applications PDF Online Free

Author :
Publisher : Courier Corporation
ISBN 13 : 048613217X
Total Pages : 434 pages
Book Rating : 4.4/5 (861 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Partial Differential Equations with Applications by : E. C. Zachmanoglou

Download or read book Introduction to Partial Differential Equations with Applications written by E. C. Zachmanoglou and published by Courier Corporation. This book was released on 2012-04-20 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Geometry in Partial Differential Equations

Download Geometry in Partial Differential Equations PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810214074
Total Pages : 482 pages
Book Rating : 4.2/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Geometry in Partial Differential Equations by : Agostino Prastaro

Download or read book Geometry in Partial Differential Equations written by Agostino Prastaro and published by World Scientific. This book was released on 1994 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes the interdisciplinary interaction in problems involving geometry and partial differential equations. It provides an attempt to follow certain threads that interconnect various approaches in the geometric applications and influence of partial differential equations. A few such approaches include: Morse-Palais-Smale theory in global variational calculus, general methods to obtain conservation laws for PDEs, structural investigation for the understanding of the meaning of quantum geometry in PDEs, extensions to super PDEs (formulated in the category of supermanifolds) of the geometrical methods just introduced for PDEs and the harmonic theory which proved to be very important especially after the appearance of the Atiyah-Singer index theorem, which provides a link between geometry and topology.

Gradient Flows

Download Gradient Flows PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 376438722X
Total Pages : 333 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Gradient Flows by : Luigi Ambrosio

Download or read book Gradient Flows written by Luigi Ambrosio and published by Springer Science & Business Media. This book was released on 2008-10-29 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the theory of gradient flows in the general framework of metric spaces, and in the more specific setting of the space of probability measures, which provide a surprising link between optimal transportation theory and many evolutionary PDE's related to (non)linear diffusion. Particular emphasis is given to the convergence of the implicit time discretization method and to the error estimates for this discretization, extending the well established theory in Hilbert spaces. The book is split in two main parts that can be read independently of each other.