The Math of Neural Networks

Download The Math of Neural Networks PDF Online Free

Author :
Publisher : Independently Published
ISBN 13 : 9781549893643
Total Pages : 168 pages
Book Rating : 4.8/5 (936 download)

DOWNLOAD NOW!


Book Synopsis The Math of Neural Networks by : Michael Taylor

Download or read book The Math of Neural Networks written by Michael Taylor and published by Independently Published. This book was released on 2017-10-04 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: There are many reasons why neural networks fascinate us and have captivated headlines in recent years. They make web searches better, organize photos, and are even used in speech translation. Heck, they can even generate encryption. At the same time, they are also mysterious and mind-bending: how exactly do they accomplish these things ? What goes on inside a neural network?On a high level, a network learns just like we do, through trial and error. This is true regardless if the network is supervised, unsupervised, or semi-supervised. Once we dig a bit deeper though, we discover that a handful of mathematical functions play a major role in the trial and error process. It also becomes clear that a grasp of the underlying mathematics helps clarify how a network learns. In the following chapters we will unpack the mathematics that drive a neural network. To do this, we will use a feedforward network as our model and follow input as it moves through the network.

Mathematics of Neural Networks

Download Mathematics of Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461560993
Total Pages : 423 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Mathematics of Neural Networks by : Stephen W. Ellacott

Download or read book Mathematics of Neural Networks written by Stephen W. Ellacott and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 423 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of research papers comprises the proceedings of the first International Conference on Mathematics of Neural Networks and Applications (MANNA), which was held at Lady Margaret Hall, Oxford from July 3rd to 7th, 1995 and attended by 116 people. The meeting was strongly supported and, in addition to a stimulating academic programme, it featured a delightful venue, excellent food and accommo dation, a full social programme and fine weather - all of which made for a very enjoyable week. This was the first meeting with this title and it was run under the auspices of the Universities of Huddersfield and Brighton, with sponsorship from the US Air Force (European Office of Aerospace Research and Development) and the London Math ematical Society. This enabled a very interesting and wide-ranging conference pro gramme to be offered. We sincerely thank all these organisations, USAF-EOARD, LMS, and Universities of Huddersfield and Brighton for their invaluable support. The conference organisers were John Mason (Huddersfield) and Steve Ellacott (Brighton), supported by a programme committee consisting of Nigel Allinson (UMIST), Norman Biggs (London School of Economics), Chris Bishop (Aston), David Lowe (Aston), Patrick Parks (Oxford), John Taylor (King's College, Lon don) and Kevin Warwick (Reading). The local organiser from Huddersfield was Ros Hawkins, who took responsibility for much of the administration with great efficiency and energy. The Lady Margaret Hall organisation was led by their bursar, Jeanette Griffiths, who ensured that the week was very smoothly run.

Deep Neural Networks in a Mathematical Framework

Download Deep Neural Networks in a Mathematical Framework PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319753045
Total Pages : 95 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Deep Neural Networks in a Mathematical Framework by : Anthony L. Caterini

Download or read book Deep Neural Networks in a Mathematical Framework written by Anthony L. Caterini and published by Springer. This book was released on 2018-03-22 with total page 95 pages. Available in PDF, EPUB and Kindle. Book excerpt: This SpringerBrief describes how to build a rigorous end-to-end mathematical framework for deep neural networks. The authors provide tools to represent and describe neural networks, casting previous results in the field in a more natural light. In particular, the authors derive gradient descent algorithms in a unified way for several neural network structures, including multilayer perceptrons, convolutional neural networks, deep autoencoders and recurrent neural networks. Furthermore, the authors developed framework is both more concise and mathematically intuitive than previous representations of neural networks. This SpringerBrief is one step towards unlocking the black box of Deep Learning. The authors believe that this framework will help catalyze further discoveries regarding the mathematical properties of neural networks.This SpringerBrief is accessible not only to researchers, professionals and students working and studying in the field of deep learning, but also to those outside of the neutral network community.

Discrete Mathematics of Neural Networks

Download Discrete Mathematics of Neural Networks PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 089871480X
Total Pages : 137 pages
Book Rating : 4.8/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Discrete Mathematics of Neural Networks by : Martin Anthony

Download or read book Discrete Mathematics of Neural Networks written by Martin Anthony and published by SIAM. This book was released on 2001-01-01 with total page 137 pages. Available in PDF, EPUB and Kindle. Book excerpt: This concise, readable book provides a sampling of the very large, active, and expanding field of artificial neural network theory. It considers select areas of discrete mathematics linking combinatorics and the theory of the simplest types of artificial neural networks. Neural networks have emerged as a key technology in many fields of application, and an understanding of the theories concerning what such systems can and cannot do is essential. Some classical results are presented with accessible proofs, together with some more recent perspectives, such as those obtained by considering decision lists. In addition, probabilistic models of neural network learning are discussed. Graph theory, some partially ordered set theory, computational complexity, and discrete probability are among the mathematical topics involved. Pointers to further reading and an extensive bibliography make this book a good starting point for research in discrete mathematics and neural networks.

Math for Deep Learning

Download Math for Deep Learning PDF Online Free

Author :
Publisher : No Starch Press
ISBN 13 : 1718501900
Total Pages : 346 pages
Book Rating : 4.7/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Math for Deep Learning by : Ronald T. Kneusel

Download or read book Math for Deep Learning written by Ronald T. Kneusel and published by No Starch Press. This book was released on 2021-12-07 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: Math for Deep Learning provides the essential math you need to understand deep learning discussions, explore more complex implementations, and better use the deep learning toolkits. With Math for Deep Learning, you'll learn the essential mathematics used by and as a background for deep learning. You’ll work through Python examples to learn key deep learning related topics in probability, statistics, linear algebra, differential calculus, and matrix calculus as well as how to implement data flow in a neural network, backpropagation, and gradient descent. You’ll also use Python to work through the mathematics that underlies those algorithms and even build a fully-functional neural network. In addition you’ll find coverage of gradient descent including variations commonly used by the deep learning community: SGD, Adam, RMSprop, and Adagrad/Adadelta.

Hands-On Mathematics for Deep Learning

Download Hands-On Mathematics for Deep Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 183864184X
Total Pages : 347 pages
Book Rating : 4.8/5 (386 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Mathematics for Deep Learning by : Jay Dawani

Download or read book Hands-On Mathematics for Deep Learning written by Jay Dawani and published by Packt Publishing Ltd. This book was released on 2020-06-12 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to getting well-versed with the mathematical techniques for building modern deep learning architectures Key FeaturesUnderstand linear algebra, calculus, gradient algorithms, and other concepts essential for training deep neural networksLearn the mathematical concepts needed to understand how deep learning models functionUse deep learning for solving problems related to vision, image, text, and sequence applicationsBook Description Most programmers and data scientists struggle with mathematics, having either overlooked or forgotten core mathematical concepts. This book uses Python libraries to help you understand the math required to build deep learning (DL) models. You'll begin by learning about core mathematical and modern computational techniques used to design and implement DL algorithms. This book will cover essential topics, such as linear algebra, eigenvalues and eigenvectors, the singular value decomposition concept, and gradient algorithms, to help you understand how to train deep neural networks. Later chapters focus on important neural networks, such as the linear neural network and multilayer perceptrons, with a primary focus on helping you learn how each model works. As you advance, you will delve into the math used for regularization, multi-layered DL, forward propagation, optimization, and backpropagation techniques to understand what it takes to build full-fledged DL models. Finally, you’ll explore CNN, recurrent neural network (RNN), and GAN models and their application. By the end of this book, you'll have built a strong foundation in neural networks and DL mathematical concepts, which will help you to confidently research and build custom models in DL. What you will learnUnderstand the key mathematical concepts for building neural network modelsDiscover core multivariable calculus conceptsImprove the performance of deep learning models using optimization techniquesCover optimization algorithms, from basic stochastic gradient descent (SGD) to the advanced Adam optimizerUnderstand computational graphs and their importance in DLExplore the backpropagation algorithm to reduce output errorCover DL algorithms such as convolutional neural networks (CNNs), sequence models, and generative adversarial networks (GANs)Who this book is for This book is for data scientists, machine learning developers, aspiring deep learning developers, or anyone who wants to understand the foundation of deep learning by learning the math behind it. Working knowledge of the Python programming language and machine learning basics is required.

An Introduction to Neural Networks

Download An Introduction to Neural Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482286998
Total Pages : 148 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Neural Networks by : Kevin Gurney

Download or read book An Introduction to Neural Networks written by Kevin Gurney and published by CRC Press. This book was released on 2018-10-08 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Artificial Neural Networks

Download Artificial Neural Networks PDF Online Free

Author :
Publisher : SPIE Press
ISBN 13 : 9780819459879
Total Pages : 184 pages
Book Rating : 4.4/5 (598 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks by : Kevin L. Priddy

Download or read book Artificial Neural Networks written by Kevin L. Priddy and published by SPIE Press. This book was released on 2005 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This tutorial text provides the reader with an understanding of artificial neural networks (ANNs), and their application, beginning with the biological systems which inspired them, through the learning methods that have been developed, and the data collection processes, to the many ways ANNs are being used today. The material is presented with a minimum of math (although the mathematical details are included in the appendices for interested readers), and with a maximum of hands-on experience. All specialized terms are included in a glossary. The result is a highly readable text that will teach the engineer the guiding principles necessary to use and apply artificial neural networks.

Dynamics of Neural Networks

Download Dynamics of Neural Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3662611848
Total Pages : 259 pages
Book Rating : 4.6/5 (626 download)

DOWNLOAD NOW!


Book Synopsis Dynamics of Neural Networks by : Michel J.A.M. van Putten

Download or read book Dynamics of Neural Networks written by Michel J.A.M. van Putten and published by Springer Nature. This book was released on 2020-12-18 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book treats essentials from neurophysiology (Hodgkin–Huxley equations, synaptic transmission, prototype networks of neurons) and related mathematical concepts (dimensionality reductions, equilibria, bifurcations, limit cycles and phase plane analysis). This is subsequently applied in a clinical context, focusing on EEG generation, ischaemia, epilepsy and neurostimulation. The book is based on a graduate course taught by clinicians and mathematicians at the Institute of Technical Medicine at the University of Twente. Throughout the text, the author presents examples of neurological disorders in relation to applied mathematics to assist in disclosing various fundamental properties of the clinical reality at hand. Exercises are provided at the end of each chapter; answers are included. Basic knowledge of calculus, linear algebra, differential equations and familiarity with MATLAB or Python is assumed. Also, students should have some understanding of essentials of (clinical) neurophysiology, although most concepts are summarized in the first chapters. The audience includes advanced undergraduate or graduate students in Biomedical Engineering, Technical Medicine and Biology. Applied mathematicians may find pleasure in learning about the neurophysiology and clinic essentials applications. In addition, clinicians with an interest in dynamics of neural networks may find this book useful, too.

Neural Networks

Download Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642610684
Total Pages : 511 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks by : Raul Rojas

Download or read book Neural Networks written by Raul Rojas and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.

Mathematics for Machine Learning

Download Mathematics for Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108569323
Total Pages : 392 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Mathematics for Machine Learning by : Marc Peter Deisenroth

Download or read book Mathematics for Machine Learning written by Marc Peter Deisenroth and published by Cambridge University Press. This book was released on 2020-04-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Deep Learning Architectures

Download Deep Learning Architectures PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030367215
Total Pages : 760 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Architectures by : Ovidiu Calin

Download or read book Deep Learning Architectures written by Ovidiu Calin and published by Springer Nature. This book was released on 2020-02-13 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes how neural networks operate from the mathematical point of view. As a result, neural networks can be interpreted both as function universal approximators and information processors. The book bridges the gap between ideas and concepts of neural networks, which are used nowadays at an intuitive level, and the precise modern mathematical language, presenting the best practices of the former and enjoying the robustness and elegance of the latter. This book can be used in a graduate course in deep learning, with the first few parts being accessible to senior undergraduates. In addition, the book will be of wide interest to machine learning researchers who are interested in a theoretical understanding of the subject.

Neural Networks Without the Math

Download Neural Networks Without the Math PDF Online Free

Author :
Publisher :
ISBN 13 : 9789887872559
Total Pages : 126 pages
Book Rating : 4.8/5 (725 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks Without the Math by : Alan French

Download or read book Neural Networks Without the Math written by Alan French and published by . This book was released on 2018-04-30 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book on neural networks for non-technical readers. Nowadays, when AI and neural networks influence and control the lives of all, everyone needs to have a very basic idea of what neural networks are and how they work. This book explains neural networks in sufficient depth for a non-CS university course.

Neural Network Learning

Download Neural Network Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 052157353X
Total Pages : 405 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Learning by : Martin Anthony

Download or read book Neural Network Learning written by Martin Anthony and published by Cambridge University Press. This book was released on 1999-11-04 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work explores probabilistic models of supervised learning problems and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, the authors develop a model of classification by real-output networks, and demonstrate the usefulness of classification...

Neural Networks in Finance

Download Neural Networks in Finance PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0124859674
Total Pages : 262 pages
Book Rating : 4.1/5 (248 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks in Finance by : Paul D. McNelis

Download or read book Neural Networks in Finance written by Paul D. McNelis and published by Academic Press. This book was released on 2005-01-05 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website

Make Your Own Neural Network

Download Make Your Own Neural Network PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781530826605
Total Pages : 0 pages
Book Rating : 4.8/5 (266 download)

DOWNLOAD NOW!


Book Synopsis Make Your Own Neural Network by : Tariq Rashid

Download or read book Make Your Own Neural Network written by Tariq Rashid and published by Createspace Independent Publishing Platform. This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for anyone who wants to understand what neural network[s] are. It's for anyone who wants to make and use their own. And it's for anyone who wants to appreciate the fairly easy but exciting mathematical ideas that are at the core of how they work. This guide is not aimed at experts in mathematics or computer science. You won't need any special knowledge or mathematical ability beyond school maths [sic] ... Teachers can use this guide as a particularly gentle explanation of neural networks and their implementation to enthuse and excite students making their very own learning artificial intelligence with only a few lines of programming language code. The code has been tested to work with a Raspberry Pi, a small inexpensive computer very popular in schools and with young students"--(page 6, Introduction)

Math and Architectures of Deep Learning

Download Math and Architectures of Deep Learning PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617296481
Total Pages : 550 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Math and Architectures of Deep Learning by : Krishnendu Chaudhury

Download or read book Math and Architectures of Deep Learning written by Krishnendu Chaudhury and published by Simon and Schuster. This book was released on 2024-03-26 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: Math and Architectures of Deep Learning bridges the gap between theory and practice, laying out the math of deep learning side by side with practical implementations in Python and PyTorch. You'll peer inside the "black box" to understand how your code is working, and learn to comprehend cutting-edge research you can turn into practical applications. Math and Architectures of Deep Learning sets out the foundations of DL usefully and accessibly to working practitioners. Each chapter explores a new fundamental DL concept or architectural pattern, explaining the underpinning mathematics and demonstrating how they work in practice with well-annotated Python code. You'll start with a primer of basic algebra, calculus, and statistics, working your way up to state-of-the-art DL paradigms taken from the latest research. Learning mathematical foundations and neural network architecture can be challenging, but the payoff is big. You'll be free from blind reliance on pre-packaged DL models and able to build, customize, and re-architect for your specific needs. And when things go wrong, you'll be glad you can quickly identify and fix problems.