Generalized Latent Variable Modeling

Download Generalized Latent Variable Modeling PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0203489438
Total Pages : 523 pages
Book Rating : 4.2/5 (34 download)

DOWNLOAD NOW!


Book Synopsis Generalized Latent Variable Modeling by : Anders Skrondal

Download or read book Generalized Latent Variable Modeling written by Anders Skrondal and published by CRC Press. This book was released on 2004-05-11 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book unifies and extends latent variable models, including multilevel or generalized linear mixed models, longitudinal or panel models, item response or factor models, latent class or finite mixture models, and structural equation models. Following a gentle introduction to latent variable modeling, the authors clearly explain and contrast a wi

Latent Variable Modeling Using R

Download Latent Variable Modeling Using R PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 1317970721
Total Pages : 337 pages
Book Rating : 4.3/5 (179 download)

DOWNLOAD NOW!


Book Synopsis Latent Variable Modeling Using R by : A. Alexander Beaujean

Download or read book Latent Variable Modeling Using R written by A. Alexander Beaujean and published by Routledge. This book was released on 2014-05-09 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This step-by-step guide is written for R and latent variable model (LVM) novices. Utilizing a path model approach and focusing on the lavaan package, this book is designed to help readers quickly understand LVMs and their analysis in R. The author reviews the reasoning behind the syntax selected and provides examples that demonstrate how to analyze data for a variety of LVMs. Featuring examples applicable to psychology, education, business, and other social and health sciences, minimal text is devoted to theoretical underpinnings. The material is presented without the use of matrix algebra. As a whole the book prepares readers to write about and interpret LVM results they obtain in R. Each chapter features background information, boldfaced key terms defined in the glossary, detailed interpretations of R output, descriptions of how to write the analysis of results for publication, a summary, R based practice exercises (with solutions included in the back of the book), and references and related readings. Margin notes help readers better understand LVMs and write their own R syntax. Examples using data from published work across a variety of disciplines demonstrate how to use R syntax for analyzing and interpreting results. R functions, syntax, and the corresponding results appear in gray boxes to help readers quickly locate this material. A unique index helps readers quickly locate R functions, packages, and datasets. The book and accompanying website at http://blogs.baylor.edu/rlatentvariable/ provides all of the data for the book’s examples and exercises as well as R syntax so readers can replicate the analyses. The book reviews how to enter the data into R, specify the LVMs, and obtain and interpret the estimated parameter values. The book opens with the fundamentals of using R including how to download the program, use functions, and enter and manipulate data. Chapters 2 and 3 introduce and then extend path models to include latent variables. Chapter 4 shows readers how to analyze a latent variable model with data from more than one group, while Chapter 5 shows how to analyze a latent variable model with data from more than one time period. Chapter 6 demonstrates the analysis of dichotomous variables, while Chapter 7 demonstrates how to analyze LVMs with missing data. Chapter 8 focuses on sample size determination using Monte Carlo methods, which can be used with a wide range of statistical models and account for missing data. The final chapter examines hierarchical LVMs, demonstrating both higher-order and bi-factor approaches. The book concludes with three Appendices: a review of common measures of model fit including their formulae and interpretation; syntax for other R latent variable models packages; and solutions for each chapter’s exercises. Intended as a supplementary text for graduate and/or advanced undergraduate courses on latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, business, economics, and social and health sciences, this book also appeals to researchers in these fields. Prerequisites include familiarity with basic statistical concepts, but knowledge of R is not assumed.

Handbook of Latent Variable and Related Models

Download Handbook of Latent Variable and Related Models PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080471269
Total Pages : 458 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Latent Variable and Related Models by :

Download or read book Handbook of Latent Variable and Related Models written by and published by Elsevier. This book was released on 2011-08-11 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook covers latent variable models, which are a flexible class of models for modeling multivariate data to explore relationships among observed and latent variables. - Covers a wide class of important models - Models and statistical methods described provide tools for analyzing a wide spectrum of complicated data - Includes illustrative examples with real data sets from business, education, medicine, public health and sociology. - Demonstrates the use of a wide variety of statistical, computational, and mathematical techniques.

Latent Variable Modeling Using R

Download Latent Variable Modeling Using R PDF Online Free

Author :
Publisher : Routledge
ISBN 13 : 131797073X
Total Pages : 218 pages
Book Rating : 4.3/5 (179 download)

DOWNLOAD NOW!


Book Synopsis Latent Variable Modeling Using R by : A. Alexander Beaujean

Download or read book Latent Variable Modeling Using R written by A. Alexander Beaujean and published by Routledge. This book was released on 2014-05-09 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This step-by-step guide is written for R and latent variable model (LVM) novices. Utilizing a path model approach and focusing on the lavaan package, this book is designed to help readers quickly understand LVMs and their analysis in R. The author reviews the reasoning behind the syntax selected and provides examples that demonstrate how to analyze data for a variety of LVMs. Featuring examples applicable to psychology, education, business, and other social and health sciences, minimal text is devoted to theoretical underpinnings. The material is presented without the use of matrix algebra. As a whole the book prepares readers to write about and interpret LVM results they obtain in R. Each chapter features background information, boldfaced key terms defined in the glossary, detailed interpretations of R output, descriptions of how to write the analysis of results for publication, a summary, R based practice exercises (with solutions included in the back of the book), and references and related readings. Margin notes help readers better understand LVMs and write their own R syntax. Examples using data from published work across a variety of disciplines demonstrate how to use R syntax for analyzing and interpreting results. R functions, syntax, and the corresponding results appear in gray boxes to help readers quickly locate this material. A unique index helps readers quickly locate R functions, packages, and datasets. The book and accompanying website at http://blogs.baylor.edu/rlatentvariable/ provides all of the data for the book’s examples and exercises as well as R syntax so readers can replicate the analyses. The book reviews how to enter the data into R, specify the LVMs, and obtain and interpret the estimated parameter values. The book opens with the fundamentals of using R including how to download the program, use functions, and enter and manipulate data. Chapters 2 and 3 introduce and then extend path models to include latent variables. Chapter 4 shows readers how to analyze a latent variable model with data from more than one group, while Chapter 5 shows how to analyze a latent variable model with data from more than one time period. Chapter 6 demonstrates the analysis of dichotomous variables, while Chapter 7 demonstrates how to analyze LVMs with missing data. Chapter 8 focuses on sample size determination using Monte Carlo methods, which can be used with a wide range of statistical models and account for missing data. The final chapter examines hierarchical LVMs, demonstrating both higher-order and bi-factor approaches. The book concludes with three Appendices: a review of common measures of model fit including their formulae and interpretation; syntax for other R latent variable models packages; and solutions for each chapter’s exercises. Intended as a supplementary text for graduate and/or advanced undergraduate courses on latent variable modeling, factor analysis, structural equation modeling, item response theory, measurement, or multivariate statistics taught in psychology, education, human development, business, economics, and social and health sciences, this book also appeals to researchers in these fields. Prerequisites include familiarity with basic statistical concepts, but knowledge of R is not assumed.

Intensive Longitudinal Analysis of Human Processes

Download Intensive Longitudinal Analysis of Human Processes PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1482230607
Total Pages : 260 pages
Book Rating : 4.4/5 (822 download)

DOWNLOAD NOW!


Book Synopsis Intensive Longitudinal Analysis of Human Processes by : Kathleen M. Gates

Download or read book Intensive Longitudinal Analysis of Human Processes written by Kathleen M. Gates and published by CRC Press. This book was released on 2023-01-31 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on a span of statistical topics relevant to researchers who seek to conduct person-specific analysis of human data. Our purpose is to provide one consolidated resource that includes techniques from disciplines such as engineering, physics, statistics, and quantitative psychology and outlines their application to data often seen in human research. The book balances mathematical concepts with information needed for using these statistical approaches in applied settings, such as interpretative caveats and issues to consider when selecting an approach. The statistical topics covered here include foundational material as well as state-of-the-art methods. These analytic approaches can be applied to a range of data types such as psychophysiological, self-report, and passively collected measures such as those obtained from smartphones. We provide examples using varied data sources including functional MRI (fMRI), daily diary, and ecological momentary assessment data. Features: Description of time series, measurement, model building, and network methods for person-specific analysis Discussion of the statistical methods in the context of human research Empirical and simulated data examples used throughout the book R code for analyses and recorded lectures for each chapter available via a link available at www.routledge.com/9781482230598 Across various disciplines of human study, researchers are increasingly seeking to conduct person-specific analysis. This book provides comprehensive information, so no prior knowledge of these methods is required. We aim to reach active researchers who already have some understanding of basic statistical testing. Our book provides a comprehensive resource for those who are just beginning to learn about person-specific analysis as well as those who already conduct such analysis but seek to further deepen their knowledge and learn new tools.

Multivariate Analysis with LISREL

Download Multivariate Analysis with LISREL PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319331531
Total Pages : 561 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Analysis with LISREL by : Karl G. Jöreskog

Download or read book Multivariate Analysis with LISREL written by Karl G. Jöreskog and published by Springer. This book was released on 2016-10-17 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book traces the theory and methodology of multivariate statistical analysis and shows how it can be conducted in practice using the LISREL computer program. It presents not only the typical uses of LISREL, such as confirmatory factor analysis and structural equation models, but also several other multivariate analysis topics, including regression (univariate, multivariate, censored, logistic, and probit), generalized linear models, multilevel analysis, and principal component analysis. It provides numerous examples from several disciplines and discusses and interprets the results, illustrated with sections of output from the LISREL program, in the context of the example. The book is intended for masters and PhD students and researchers in the social, behavioral, economic and many other sciences who require a basic understanding of multivariate statistical theory and methods for their analysis of multivariate data. It can also be used as a textbook on various topics of multivariate statistical analysis.

An Introduction to Categorical Data Analysis

Download An Introduction to Categorical Data Analysis PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119405289
Total Pages : 414 pages
Book Rating : 4.1/5 (194 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Categorical Data Analysis by : Alan Agresti

Download or read book An Introduction to Categorical Data Analysis written by Alan Agresti and published by John Wiley & Sons. This book was released on 2018-10-11 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable new edition of a standard reference The use of statistical methods for categorical data has increased dramatically, particularly for applications in the biomedical and social sciences. An Introduction to Categorical Data Analysis, Third Edition summarizes these methods and shows readers how to use them using software. Readers will find a unified generalized linear models approach that connects logistic regression and loglinear models for discrete data with normal regression for continuous data. Adding to the value in the new edition is: • Illustrations of the use of R software to perform all the analyses in the book • A new chapter on alternative methods for categorical data, including smoothing and regularization methods (such as the lasso), classification methods such as linear discriminant analysis and classification trees, and cluster analysis • New sections in many chapters introducing the Bayesian approach for the methods of that chapter • More than 70 analyses of data sets to illustrate application of the methods, and about 200 exercises, many containing other data sets • An appendix showing how to use SAS, Stata, and SPSS, and an appendix with short solutions to most odd-numbered exercises Written in an applied, nontechnical style, this book illustrates the methods using a wide variety of real data, including medical clinical trials, environmental questions, drug use by teenagers, horseshoe crab mating, basketball shooting, correlates of happiness, and much more. An Introduction to Categorical Data Analysis, Third Edition is an invaluable tool for statisticians and biostatisticians as well as methodologists in the social and behavioral sciences, medicine and public health, marketing, education, and the biological and agricultural sciences.

The Analysis and Interpretation of Multivariate Data for Social Scientists

Download The Analysis and Interpretation of Multivariate Data for Social Scientists PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9781584882954
Total Pages : 290 pages
Book Rating : 4.8/5 (829 download)

DOWNLOAD NOW!


Book Synopsis The Analysis and Interpretation of Multivariate Data for Social Scientists by : J.I. Galbraith

Download or read book The Analysis and Interpretation of Multivariate Data for Social Scientists written by J.I. Galbraith and published by CRC Press. This book was released on 2002-02-26 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multivariate analysis is an important tool for social researchers, but the subject is broad and can be quite technical for those with limited mathematical and statistical backgrounds. To effectively acquire the tools and techniques they need to interpret multivariate data, social science students need clear explanations, a minimum of mathematical detail, and a wide range of exercises and worked examples. Classroom tested for more than 10 years, The Analysis and Interpretation of Multivariate Data for Social Scientists describes and illustrates methods of multivariate data analysis important to the social sciences. The authors focus on interpreting the pattern of relationships among many variables rather than establishing causal linkages, and rely heavily on numerical examples, visualization, and on verbal , rather than mathematical exposition. They present methods for categorical variables alongside the more familiar method for continuous variables and place particular emphasis on latent variable techniques. Ideal for introductory, senior undergraduate and graduate-level courses in multivariate analysis for social science students, this book combines depth of understanding and insight with the practical details of how to carry out and interpret multivariate analyses on real data. It gives them a solid understanding of the most commonly used multivariate methods and the knowledge and tools to implement them. Datasets, the SPSS syntax and code used in the examples, and software for performing latent variable modelling are available at http://www.mlwin.com/team/aimdss.html>

An Introduction to Latent Variable Models

Download An Introduction to Latent Variable Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9400955642
Total Pages : 116 pages
Book Rating : 4.4/5 (9 download)

DOWNLOAD NOW!


Book Synopsis An Introduction to Latent Variable Models by : B. Everett

Download or read book An Introduction to Latent Variable Models written by B. Everett and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 116 pages. Available in PDF, EPUB and Kindle. Book excerpt: Latent variable models are used in many areas of the social and behavioural sciences, and the increasing availability of computer packages for fitting such models is likely to increase their popularity. This book attempts to introduce such models to applied statisticians and research workers interested in exploring the structure of covari ance and correlation matrices in terms of a small number of unob servable constructs. The emphasis is on the practical application of the procedures rather than on detailed discussion of their mathe matical and statistical properties. It is assumed that the reader is familiar with the most commonly used statistical concepts and methods, particularly regression, and also has a fair knowledge of matrix algebra. My thanks are due to my colleagues Dr David Hand and Dr Graham Dunn for helpful comments on the book, to Mrs Bertha Lakey for her careful typing of a difficult manuscript and to Peter Cuttance for assistance with the LlSREL package. In addition the text clearly owes a great deal to the work on structural equation models published by Karl Joreskog, Dag Sorbom, Peter Bentler, Michael Browne and others.

Structural Vector Autoregressive Analysis

Download Structural Vector Autoregressive Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107196574
Total Pages : 757 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Structural Vector Autoregressive Analysis by : Lutz Kilian

Download or read book Structural Vector Autoregressive Analysis written by Lutz Kilian and published by Cambridge University Press. This book was released on 2017-11-23 with total page 757 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the econometric foundations of structural vector autoregressive modeling, as used in empirical macroeconomics, finance, and related fields.

The Oxford Handbook of Economic Forecasting

Download The Oxford Handbook of Economic Forecasting PDF Online Free

Author :
Publisher : OUP USA
ISBN 13 : 0195398645
Total Pages : 732 pages
Book Rating : 4.1/5 (953 download)

DOWNLOAD NOW!


Book Synopsis The Oxford Handbook of Economic Forecasting by : Michael P. Clements

Download or read book The Oxford Handbook of Economic Forecasting written by Michael P. Clements and published by OUP USA. This book was released on 2011-07-08 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.

Riskfree rate dynamics

Download Riskfree rate dynamics PDF Online Free

Author :
Publisher : Rozenberg Publishers
ISBN 13 : 905170769X
Total Pages : 155 pages
Book Rating : 4.0/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Riskfree rate dynamics by : Michel van der Wel.

Download or read book Riskfree rate dynamics written by Michel van der Wel. and published by Rozenberg Publishers. This book was released on 2008 with total page 155 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Assessing Measurement Invariance for Applied Research

Download Assessing Measurement Invariance for Applied Research PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108485227
Total Pages : 417 pages
Book Rating : 4.1/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Assessing Measurement Invariance for Applied Research by : Craig S. Wells

Download or read book Assessing Measurement Invariance for Applied Research written by Craig S. Wells and published by Cambridge University Press. This book was released on 2021-06-03 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: This user-friendly guide illustrates how to assess measurement invariance using computer programs, statistical methods, and real data.

Innovations in Multivariate Statistical Analysis

Download Innovations in Multivariate Statistical Analysis PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461546036
Total Pages : 302 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Innovations in Multivariate Statistical Analysis by : Risto D.H. Heijmans

Download or read book Innovations in Multivariate Statistical Analysis written by Risto D.H. Heijmans and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The three decades which have followed the publication of Heinz Neudecker's seminal paper `Some Theorems on Matrix Differentiation with Special Reference to Kronecker Products' in the Journal of the American Statistical Association (1969) have witnessed the growing influence of matrix analysis in many scientific disciplines. Amongst these are the disciplines to which Neudecker has contributed directly - namely econometrics, economics, psychometrics and multivariate analysis. This book aims to illustrate how powerful the tools of matrix analysis have become as weapons in the statistician's armoury. The majority of its chapters are concerned primarily with theoretical innovations, but all of them have applications in view, and some of them contain extensive illustrations of the applied techniques. This book will provide research workers and graduate students with a cross-section of innovative work in the fields of matrix methods and multivariate statistical analysis. It should be of interest to students and practitioners in a wide range of subjects which rely upon modern methods of statistical analysis. The contributors to the book are themselves practitioners of a wide range of subjects including econometrics, psychometrics, educational statistics, computation methods and electrical engineering, but they find a common ground in the methods which are represented in the book. It is envisaged that the book will serve as an important work of reference and as a source of inspiration for some years to come.

Design and Analysis for Quantitative Research in Music Education

Download Design and Analysis for Quantitative Research in Music Education PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199391920
Total Pages : 305 pages
Book Rating : 4.1/5 (993 download)

DOWNLOAD NOW!


Book Synopsis Design and Analysis for Quantitative Research in Music Education by : Peter Miksza

Download or read book Design and Analysis for Quantitative Research in Music Education written by Peter Miksza and published by Oxford University Press. This book was released on 2018-02-01 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, academics and professionals in the social sciences have forged significant advances in quantitative research methodologies specific to their respective disciplines. Although new and sophisticated techniques for large-scale data analyses have become commonplace in general educational, psychological, sociological, and econometric fields, many researchers in music education have yet to be exposed to such techniques. Design and Analysis of Quantitative Research in Music Education is a comprehensive reference for those involved with research in music education and related fields, providing a foundational understanding of quantitative inquiry methods. Authors Peter Miksza and Kenneth Elpus update and expand the set of resources that music researchers have at their disposal for conceptualizing and analyzing data pertaining to music-related phenomena. This text is designed to familiarize readers with foundational issues of quantitative inquiry as a point of view, introduce and elaborate upon issues of fundamental quantitative research design and analysis, and expose researchers to new, innovative, and exciting methods for dealing with complex research questions and analyzing large samples of data in a rigorous and thorough manner. With this resource, researchers will be better equipped for dealing with the challenges of the increasingly information-rich and data-driven environment surrounding music education. An accompanying companion website provides valuable supplementary exercises and videos.

Bayesian Theory and Applications

Download Bayesian Theory and Applications PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0199695601
Total Pages : 717 pages
Book Rating : 4.1/5 (996 download)

DOWNLOAD NOW!


Book Synopsis Bayesian Theory and Applications by : Paul Damien

Download or read book Bayesian Theory and Applications written by Paul Damien and published by Oxford University Press. This book was released on 2013-01-24 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume guides the reader along a statistical journey that begins with the basic structure of Bayesian theory, and then provides details on most of the past and present advances in this field.

Conceptual Econometrics Using R

Download Conceptual Econometrics Using R PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444643125
Total Pages : 332 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Conceptual Econometrics Using R by :

Download or read book Conceptual Econometrics Using R written by and published by Elsevier. This book was released on 2019-08-20 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conceptual Econometrics Using R, Volume 41 provides state-of-the-art information on important topics in econometrics, including quantitative game theory, multivariate GARCH, stochastic frontiers, fractional responses, specification testing and model selection, exogeneity testing, causal analysis and forecasting, GMM models, asset bubbles and crises, corporate investments, classification, forecasting, nonstandard problems, cointegration, productivity and financial market jumps and co-jumps, among others. - Presents chapters authored by distinguished, honored researchers who have received awards from the Journal of Econometrics or the Econometric Society - Includes descriptions and links to resources and free open source R, allowing readers to not only use the tools on their own data, but also jumpstart their understanding of the state-of-the-art