Elements of Operator Theory

Download Elements of Operator Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475733283
Total Pages : 535 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Elements of Operator Theory by : Carlos S. Kubrusly

Download or read book Elements of Operator Theory written by Carlos S. Kubrusly and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: {\it Elements of Operatory Theory} is aimed at graduate students as well as a new generation of mathematicians and scientists who need to apply operator theory to their field. Written in a user-friendly, motivating style, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, Hilbert spaces, culminating with the Spectral Theorem, one of the landmarks in the theory of operators on Hilbert spaces. The exposition is concept-driven and as much as possible avoids the formula-computational approach. Key features of this largely self-contained work include: * required background material to each chapter * fully rigorous proofs, over 300 of them, are specially tailored to the presentation and some are new * more than 100 examples and, in several cases, interesting counterexamples that demonstrate the frontiers of an important theorem * over 300 problems, many with hints * both problems and examples underscore further auxiliary results and extensions of the main theory; in this non-traditional framework, the reader is challenged and has a chance to prove the principal theorems anew This work is an excellent text for the classroom as well as a self-study resource for researchers. Prerequisites include an introduction to analysis and to functions of a complex variable, which most first-year graduate students in mathematics, engineering, or another formal science have already acquired. Measure theory and integration theory are required only for the last section of the final chapter.

The Elements of Operator Theory

Download The Elements of Operator Theory PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 9780817680824
Total Pages : 540 pages
Book Rating : 4.6/5 (88 download)

DOWNLOAD NOW!


Book Synopsis The Elements of Operator Theory by : Carlos S. Kubrusly

Download or read book The Elements of Operator Theory written by Carlos S. Kubrusly and published by Birkhäuser. This book was released on 2011-03-07 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition of Elements of Operator Theory is a concept-driven textbook that includes a significant expansion of the problems and solutions used to illustrate the principles of operator theory. Written in a user-friendly, motivating style intended to avoid the formula-computational approach, fundamental topics are presented in a systematic fashion, i.e., set theory, algebraic structures, topological structures, Banach spaces, and Hilbert spaces, culminating with the Spectral Theorem. Included in this edition: more than 150 examples, with several interesting counterexamples that demonstrate the frontiers of important theorems, as many as 300 fully rigorous proofs, specially tailored to the presentation, 300 problems, many with hints, and an additional 20 pages of problems for the second edition. *This self-contained work is an excellent text for the classroom as well as a self-study resource for researchers.

Elements of Hilbert Spaces and Operator Theory

Download Elements of Hilbert Spaces and Operator Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811030200
Total Pages : 522 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Elements of Hilbert Spaces and Operator Theory by : Harkrishan Lal Vasudeva

Download or read book Elements of Hilbert Spaces and Operator Theory written by Harkrishan Lal Vasudeva and published by Springer. This book was released on 2017-03-27 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents an introduction to the geometry of Hilbert spaces and operator theory, targeting graduate and senior undergraduate students of mathematics. Major topics discussed in the book are inner product spaces, linear operators, spectral theory and special classes of operators, and Banach spaces. On vector spaces, the structure of inner product is imposed. After discussing geometry of Hilbert spaces, its applications to diverse branches of mathematics have been studied. Along the way are introduced orthogonal polynomials and their use in Fourier series and approximations. Spectrum of an operator is the key to the understanding of the operator. Properties of the spectrum of different classes of operators, such as normal operators, self-adjoint operators, unitaries, isometries and compact operators have been discussed. A large number of examples of operators, along with their spectrum and its splitting into point spectrum, continuous spectrum, residual spectrum, approximate point spectrum and compression spectrum, have been worked out. Spectral theorems for self-adjoint operators, and normal operators, follow the spectral theorem for compact normal operators. The book also discusses invariant subspaces with special attention to the Volterra operator and unbounded operators. In order to make the text as accessible as possible, motivation for the topics is introduced and a greater amount of explanation than is usually found in standard texts on the subject is provided. The abstract theory in the book is supplemented with concrete examples. It is expected that these features will help the reader get a good grasp of the topics discussed. Hints and solutions to all the problems are collected at the end of the book. Additional features are introduced in the book when it becomes imperative. This spirit is kept alive throughout the book.

Spectral Theory of Linear Operators

Download Spectral Theory of Linear Operators PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3764382651
Total Pages : 439 pages
Book Rating : 4.7/5 (643 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory of Linear Operators by : Vladimir Müller

Download or read book Spectral Theory of Linear Operators written by Vladimir Müller and published by Springer Science & Business Media. This book was released on 2007-12-24 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is dedicated to the spectral theory of linear operators on Banach spaces and of elements in Banach algebras. It presents a survey of results concerning various types of spectra, both of single and n-tuples of elements. Typical examples are the one-sided spectra, the approximate point, essential, local and Taylor spectrum, and their variants. Many results appear here for the first time in a monograph.

Elementary Operator Theory

Download Elementary Operator Theory PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110598884
Total Pages : 406 pages
Book Rating : 4.1/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Elementary Operator Theory by : Marat V. Markin

Download or read book Elementary Operator Theory written by Marat V. Markin and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-04-06 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended as a text for a one-semester graduate course in operator theory to be taught "from scratch'', not as a sequel to a functional analysis course, with the basics of the spectral theory of linear operators taking the center stage. The book consists of six chapters and appendix, with the material flowing from the fundamentals of abstract spaces (metric, vector, normed vector, and inner product), the Banach Fixed-Point Theorem and its applications, such as Picard's Existence and Uniqueness Theorem, through the basics of linear operators, two of the three fundamental principles (the Uniform Boundedness Principle and the Open Mapping Theorem and its equivalents: the Inverse Mapping and Closed Graph Theorems), to the elements of the spectral theory, including Gelfand's Spectral Radius Theorem and the Spectral Theorem for Compact Self-Adjoint Operators, and its applications, such as the celebrated Lyapunov Stability Theorem. Conceived as a text to be used in a classroom, the book constantly calls for the student's actively mastering the knowledge of the subject matter. There are problems at the end of each chapter, starting with Chapter 2 and totaling at 150. Many important statements are given as problems and frequently referred to in the main body. There are also 432 Exercises throughout the text, including Chapter 1 and the Appendix, which require of the student to prove or verify a statement or an example, fill in certain details in a proof, or provide an intermediate step or a counterexample. They are also an inherent part of the material. More difficult problems are marked with an asterisk, many problems and exercises are supplied with "existential'' hints. The book is generous on Examples and contains numerous Remarks accompanying definitions, examples, and statements to discuss certain subtleties, raise questions on whether the converse assertions are true, whenever appropriate, or whether the conditions are essential. With carefully chosen material, proper attention given to applications, and plenty of examples, problems, and exercises, this well-designed text is ideal for a one-semester Master's level graduate course in operator theory with emphasis on spectral theory for students majoring in mathematics, physics, computer science, and engineering. Contents Preface Preliminaries Metric Spaces Vector Spaces, Normed Vector Spaces, and Banach Spaces Linear Operators Elements of Spectral Theory in a Banach Space Setting Elements of Spectral Theory in a Hilbert Space Setting Appendix: The Axiom of Choice and Equivalents Bibliography Index

Operator Theory in Function Spaces

Download Operator Theory in Function Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821839659
Total Pages : 368 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Operator Theory in Function Spaces by : Kehe Zhu

Download or read book Operator Theory in Function Spaces written by Kehe Zhu and published by American Mathematical Soc.. This book was released on 2007 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers Toeplitz operators, Hankel operators, and composition operators on both the Bergman space and the Hardy space. The setting is the unit disk and the main emphasis is on size estimates of these operators: boundedness, compactness, and membership in the Schatten classes. Most results concern the relationship between operator-theoretic properties of these operators and function-theoretic properties of the inducing symbols. Thus a good portion of the book is devoted to the study of analytic function spaces such as the Bloch space, Besov spaces, and BMOA, whose elements are to be used as symbols to induce the operators we study. The book is intended for both research mathematicians and graduate students in complex analysis and operator theory. The prerequisites are minimal; a graduate course in each of real analysis, complex analysis, and functional analysis should sufficiently prepare the reader for the book. Exercises and bibliographical notes are provided at the end of each chapter. These notes will point the reader to additional results and problems. Kehe Zhu is a professor of mathematics at the State University of New York at Albany. His previous books include Theory of Bergman Spaces (Springer, 2000, with H. Hedenmalm and B. Korenblum) and Spaces of Holomorphic Functions in the Unit Ball (Springer, 2005). His current research interests are holomorphic function spaces and operators acting on them.

A Course in Operator Theory

Download A Course in Operator Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821820656
Total Pages : 390 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Course in Operator Theory by : John B. Conway

Download or read book A Course in Operator Theory written by John B. Conway and published by American Mathematical Soc.. This book was released on 2000 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: Operator theory is a significant part of many important areas of modern mathematics: functional analysis, differential equations, index theory, representation theory, mathematical physics, and more. This text covers the central themes of operator theory, presented with the excellent clarity and style that readers have come to associate with Conway's writing. Early chapters introduce and review material on $C^*$-algebras, normal operators, compact operators, and non-normal operators. Some of the major topics covered are the spectral theorem, the functional calculus, and the Fredholm index. In addition, some deep connections between operator theory and analytic functions are presented. Later chapters cover more advanced topics, such as representations of $C^*$-algebras, compact perturbations, and von Neumann algebras. Major results, such as the Sz.-Nagy Dilation Theorem, the Weyl-von Neumann-Berg Theorem, and the classification of von Neumann algebras, are covered, as is a treatment of Fredholm theory. The last chapter gives an introduction to reflexive subspaces, which along with hyperreflexive spaces, are one of the more successful episodes in the modern study of asymmetric algebras. Professor Conway's authoritative treatment makes this a compelling and rigorous course text, suitable for graduate students who have had a standard course in functional analysis.

C*-Algebras and Operator Theory

Download C*-Algebras and Operator Theory PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080924964
Total Pages : 296 pages
Book Rating : 4.0/5 (89 download)

DOWNLOAD NOW!


Book Synopsis C*-Algebras and Operator Theory by : Gerald J. Murphy

Download or read book C*-Algebras and Operator Theory written by Gerald J. Murphy and published by Academic Press. This book was released on 2014-06-28 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.

Introduction to Operator Theory: Elements of functional analysis

Download Introduction to Operator Theory: Elements of functional analysis PDF Online Free

Author :
Publisher :
ISBN 13 : 9787506200851
Total Pages : pages
Book Rating : 4.2/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Operator Theory: Elements of functional analysis by : Arlen Brown

Download or read book Introduction to Operator Theory: Elements of functional analysis written by Arlen Brown and published by . This book was released on 1977 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Operator Theory for Electromagnetics

Download Operator Theory for Electromagnetics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1475736797
Total Pages : 640 pages
Book Rating : 4.4/5 (757 download)

DOWNLOAD NOW!


Book Synopsis Operator Theory for Electromagnetics by : George W. Hanson

Download or read book Operator Theory for Electromagnetics written by George W. Hanson and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text discusses electromagnetics from the view of operator theory, in a manner more commonly seen in textbooks of quantum mechanics. It includes a self-contained introduction to operator theory, presenting definitions and theorems, plus proofs of the theorems when these are simple or enlightening.

Introduction to Operator Theory I

Download Introduction to Operator Theory I PDF Online Free

Author :
Publisher : Springer
ISBN 13 :
Total Pages : 504 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Introduction to Operator Theory I by : A. Brown

Download or read book Introduction to Operator Theory I written by A. Brown and published by Springer. This book was released on 1977-12-19 with total page 504 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was written expressly to serve as a textbook for a one- or two-semester introductory graduate course in functional analysis. Its (soon to be published) companion volume, Operators on Hilbert Space, is in tended to be used as a textbook for a subsequent course in operator theory. In writing these books we have naturally been concerned with the level of preparation of the potential reader, and, roughly speaking, we suppose him to be familiar with the approximate equivalent of a one-semester course in each of the following areas: linear algebra, general topology, complex analysis, and measure theory. Experience has taught us, however, that such a sequence of courses inevitably fails to treat certain topics that are important in the study of functional analysis and operator theory. For example, tensor products are frequently not discussed in a first course in linear algebra. Likewise for the topics of convergence of nets and the Baire category theorem in a course in topology, and the connections between measure and topology in a course in measure theory. For this reason we have chosen to devote the first ten chapters of this volume (entitled Part I) to topics of a preliminary nature. In other words, Part I summarizes in considerable detail what a student should (and eventually must) know in order to study functional analysis and operator theory successfully.

Introduction to Operator Theory I

Download Introduction to Operator Theory I PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9781461299271
Total Pages : 476 pages
Book Rating : 4.2/5 (992 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Operator Theory I by : A. Brown

Download or read book Introduction to Operator Theory I written by A. Brown and published by Springer. This book was released on 2013-06-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was written expressly to serve as a textbook for a one- or two-semester introductory graduate course in functional analysis. Its (soon to be published) companion volume, Operators on Hilbert Space, is in tended to be used as a textbook for a subsequent course in operator theory. In writing these books we have naturally been concerned with the level of preparation of the potential reader, and, roughly speaking, we suppose him to be familiar with the approximate equivalent of a one-semester course in each of the following areas: linear algebra, general topology, complex analysis, and measure theory. Experience has taught us, however, that such a sequence of courses inevitably fails to treat certain topics that are important in the study of functional analysis and operator theory. For example, tensor products are frequently not discussed in a first course in linear algebra. Likewise for the topics of convergence of nets and the Baire category theorem in a course in topology, and the connections between measure and topology in a course in measure theory. For this reason we have chosen to devote the first ten chapters of this volume (entitled Part I) to topics of a preliminary nature. In other words, Part I summarizes in considerable detail what a student should (and eventually must) know in order to study functional analysis and operator theory successfully.

MATHEMATICAL CONCEPTS OF QUANTUM MECHANICS

Download MATHEMATICAL CONCEPTS OF QUANTUM MECHANICS PDF Online Free

Author :
Publisher :
ISBN 13 : 3030595625
Total Pages : pages
Book Rating : 4.0/5 (35 download)

DOWNLOAD NOW!


Book Synopsis MATHEMATICAL CONCEPTS OF QUANTUM MECHANICS by : STEPHEN J. GUSTAFSON

Download or read book MATHEMATICAL CONCEPTS OF QUANTUM MECHANICS written by STEPHEN J. GUSTAFSON and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The book gives a streamlined introduction to quantum mechanics while describing the basic mathematical structures underpinning this discipline. Starting with an overview of key physical experiments illustrating the origin of the physical foundations, the book proceeds with a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The more advanced topics presented include: many-body systems, modern perturbation theory, path integrals, the theory of resonances, adiabatic theory, geometrical phases, Aharonov-Bohm effect, density functional theory, open systems, the theory of radiation (non-relativistic quantum electrodynamics), and the renormalization group. With different selections of chapters, the book can serve as a text for an introductory, intermediate, or advanced course in quantum mechanics. Some of the sections could be used for introductions to geometrical methods in Quantum Mechanics, to quantum information theory and to quantum electrodynamics and quantum field theory.

Spectral Theory of Operators on Hilbert Spaces

Download Spectral Theory of Operators on Hilbert Spaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0817683283
Total Pages : 197 pages
Book Rating : 4.8/5 (176 download)

DOWNLOAD NOW!


Book Synopsis Spectral Theory of Operators on Hilbert Spaces by : Carlos S. Kubrusly

Download or read book Spectral Theory of Operators on Hilbert Spaces written by Carlos S. Kubrusly and published by Springer Science & Business Media. This book was released on 2012-06-01 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is a concise introduction to spectral theory of Hilbert space operators. Its emphasis is on recent aspects of theory and detailed proofs, with the primary goal of offering a modern introductory textbook for a first graduate course in the subject. The coverage of topics is thorough, as the book explores various delicate points and hidden features often left untreated. Spectral Theory of Operators on Hilbert Spaces is addressed to an interdisciplinary audience of graduate students in mathematics, statistics, economics, engineering, and physics. It will also be useful to working mathematicians using spectral theory of Hilbert space operators, as well as for scientists wishing to apply spectral theory to their field. ​

Limit Operators and Their Applications in Operator Theory

Download Limit Operators and Their Applications in Operator Theory PDF Online Free

Author :
Publisher : Birkhäuser
ISBN 13 : 3034879113
Total Pages : 404 pages
Book Rating : 4.0/5 (348 download)

DOWNLOAD NOW!


Book Synopsis Limit Operators and Their Applications in Operator Theory by : Vladimir Rabinovich

Download or read book Limit Operators and Their Applications in Operator Theory written by Vladimir Rabinovich and published by Birkhäuser. This book was released on 2012-12-06 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first monograph devoted to a fairly wide class of operators, namely band and band-dominated operators and their Fredholm theory. The main tool in studying this topic is limit operators. Applications are presented to several important classes of such operators: convolution type operators and pseudo-differential operators on bad domains and with bad coefficients.

Operator Algebras

Download Operator Algebras PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540285172
Total Pages : 528 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Operator Algebras by : Bruce Blackadar

Download or read book Operator Algebras written by Bruce Blackadar and published by Springer Science & Business Media. This book was released on 2006-03-09 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive introduction to the general theory of C*-algebras and von Neumann algebras. Beginning with the basics, the theory is developed through such topics as tensor products, nuclearity and exactness, crossed products, K-theory, and quasidiagonality. The presentation carefully and precisely explains the main features of each part of the theory of operator algebras; most important arguments are at least outlined and many are presented in full detail.

Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators

Download Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470016914
Total Pages : 362 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators by : Tailen Hsing

Download or read book Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators written by Tailen Hsing and published by John Wiley & Sons. This book was released on 2015-05-06 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Theoretical Foundations of Functional Data Analysis, with an Introduction to Linear Operators provides a uniquely broad compendium of the key mathematical concepts and results that are relevant for the theoretical development of functional data analysis (FDA). The self–contained treatment of selected topics of functional analysis and operator theory includes reproducing kernel Hilbert spaces, singular value decomposition of compact operators on Hilbert spaces and perturbation theory for both self–adjoint and non self–adjoint operators. The probabilistic foundation for FDA is described from the perspective of random elements in Hilbert spaces as well as from the viewpoint of continuous time stochastic processes. Nonparametric estimation approaches including kernel and regularized smoothing are also introduced. These tools are then used to investigate the properties of estimators for the mean element, covariance operators, principal components, regression function and canonical correlations. A general treatment of canonical correlations in Hilbert spaces naturally leads to FDA formulations of factor analysis, regression, MANOVA and discriminant analysis. This book will provide a valuable reference for statisticians and other researchers interested in developing or understanding the mathematical aspects of FDA. It is also suitable for a graduate level special topics course.