TensorFlow Pocket Primer

Download TensorFlow Pocket Primer PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 1683923650
Total Pages : 281 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis TensorFlow Pocket Primer by : Oswald Campesato

Download or read book TensorFlow Pocket Primer written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2019-05-09 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the best-selling Pocket Primer series, this book is designed to introduce beginners to TensorFlow 1.x fundamentals for basic machine learning algorithms in TensorFlow. It is intended to be a fast-paced introduction to various “core” features of TensorFlow, with code samples that cover deep learning and TensorFlow basics. The material in the chapters illustrates how to solve a variety of tasks after which you can do further reading to deepen your knowledge. Companion files with all of the code samples are available for downloading from the publisher by writing to [email protected]. Features: Uses Python for code samples Covers TensorFlow APIs and Datasets Assumes the reader has very limited experience Companion files with all of the source code examples (download from the publisher)

Python for TensorFlow Pocket Primer

Download Python for TensorFlow Pocket Primer PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 1683923626
Total Pages : 318 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Python for TensorFlow Pocket Primer by : Oswald Campesato

Download or read book Python for TensorFlow Pocket Primer written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2019-05-09 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the best-selling Pocket Primer series, this book is designed to prepare programmers for machine learning and deep learning/TensorFlow topics. It begins with a quick introduction to Python, followed by chapters that discuss NumPy, Pandas, Matplotlib, and scikit-learn. The final two chapters contain an assortment of TensorFlow 1.x code samples, including detailed code samples for TensorFlow Dataset (which is used heavily in TensorFlow 2 as well). A TensorFlow Dataset refers to the classes in the tf.data.Dataset namespace that enables programmers to construct a pipeline of data by means of method chaining so-called lazy operators, e.g., map(), filter(), batch(), and so forth, based on data from one or more data sources. Companion files with source code are available for downloading from the publisher by writing [email protected]. Features: A practical introduction to Python, NumPy, Pandas, Matplotlib, and introductory aspects of TensorFlow 1.x Contains relevant NumPy/Pandas code samples that are typical in machine learning topics, and also useful TensorFlow 1.x code samples for deep learning/TensorFlow topics Includes many examples of TensorFlow Dataset APIs with lazy operators, e.g., map(), filter(), batch(), take() and also method chaining such operators Assumes the reader has very limited experience Companion files with all of the source code examples (download from the publisher)

TensorFlow 2 Pocket Primer

Download TensorFlow 2 Pocket Primer PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 1683924592
Total Pages : 219 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis TensorFlow 2 Pocket Primer by : Oswald Campesato

Download or read book TensorFlow 2 Pocket Primer written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2019-08-27 with total page 219 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the best-selling Pocket Primer series, this book is designed to introduce beginners to basic machine learning algorithms using TensorFlow 2. It is intended to be a fast-paced introduction to various “core” features of TensorFlow, with code samples that cover machine learning and TensorFlow basics. A comprehensive appendix contains some Keras-based code samples and the underpinnings of MLPs, CNNs, RNNs, and LSTMs. The material in the chapters illustrates how to solve a variety of tasks after which you can do further reading to deepen your knowledge. Companion files with all of the code samples are available for downloading from the publisher by emailing proof of purchase to [email protected]. Features: Uses Python for code samples Covers TensorFlow 2 APIs and Datasets Includes a comprehensive appendix that covers Keras and advanced topics such as NLPs, MLPs, RNNs, LSTMs Features the companion files with all of the source code examples and figures (download from the publisher)

Angular and Machine Learning Pocket Primer

Download Angular and Machine Learning Pocket Primer PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 168392469X
Total Pages : 268 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Angular and Machine Learning Pocket Primer by : Oswald Campesato

Download or read book Angular and Machine Learning Pocket Primer written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2020-03-27 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to basic machine learning concepts and incorporate that knowledge into Angular applications. The book is intended to be a fast-paced introduction to some basic features of machine learning and an overview of several popular machine learning classifiers. It includes code samples and numerous figures and covers topics such as Angular functionality, basic machine learning concepts, classification algorithms, TensorFlow and Keras. The files with code and color figures are on the companion disc with the book or available from the publisher. Features: Introduces the basic machine learning concepts and Angular applications Includes source code and full color figures

Angular and Deep Learning Pocket Primer

Download Angular and Deep Learning Pocket Primer PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 168392472X
Total Pages : 360 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Angular and Deep Learning Pocket Primer by : Oswald Campesato

Download or read book Angular and Deep Learning Pocket Primer written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2020-10-13 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to basic deep learning concepts and incorporate that knowledge into Angular 10 applications. It is intended to be a fast-paced introduction to some basic features of deep learning and an overview of several popular deep learning classifiers. The book includes code samples and numerous figures and covers topics such as Angular 10 functionality, basic deep learning concepts, classification algorithms, TensorFlow, and Keras. Companion files with code and color figures are included. FEATURES: Introduces basic deep learning concepts and Angular 10 applications Covers MLPs (MultiLayer Perceptrons) and CNNs (Convolutional Neural Networks), RNNs (Recurrent Neural Networks), LSTMs (Long Short-Term Memory), GRUs (Gated Recurrent Units), autoencoders, and GANs (Generative Adversarial Networks) Introduces TensorFlow 2 and Keras Includes companion files with source code and 4-color figures. The companion files are also available online by emailing the publisher with proof of purchase at [email protected].

Python

Download Python PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 1937585492
Total Pages : 344 pages
Book Rating : 4.9/5 (375 download)

DOWNLOAD NOW!


Book Synopsis Python by : Oswald Campesato

Download or read book Python written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2012-12-15 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the new Pocket Primer series, this book provides an overview of the major aspects and the source code to use Python 2. It covers the latest Python developments, built-in functions and custom classes, data visualization, graphics, databases, and more. It includes a companion disc with appendices, source code, and figures. This Pocket Primer is primarily for self-directed learners who want to learn Python 2 and it serves as a starting point for deeper exploration of Python programming. Features: +Includes a companion disc with appendices, source code, and figures +Contains material devoted to Raspberry Pi, Roomba, JSON, and Jython +Includes latest Python 2 developments, built-in functions and custom classes, data visualization, graphics, databases, and more +Provides a solid introduction to Python 2 via complete code samples On the CD-ROM: +Appendices (HTML5 and JavaScript Toolkits, Jython, SPA) +Source code samples +All images from the text (including 4-color) +Solutions to Odd-Numbered Exercises

Artificial Intelligence, Machine Learning, and Deep Learning

Download Artificial Intelligence, Machine Learning, and Deep Learning PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 1683924665
Total Pages : 314 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence, Machine Learning, and Deep Learning by : Oswald Campesato

Download or read book Artificial Intelligence, Machine Learning, and Deep Learning written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2020-01-23 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book begins with an introduction to AI, followed by machine learning, deep learning, NLP, and reinforcement learning. Readers will learn about machine learning classifiers such as logistic regression, k-NN, decision trees, random forests, and SVMs. Next, the book covers deep learning architectures such as CNNs, RNNs, LSTMs, and auto encoders. Keras-based code samples are included to supplement the theoretical discussion. In addition, this book contains appendices for Keras, TensorFlow 2, and Pandas. Features: Covers an introduction to programming concepts related to AI, machine learning, and deep learning Includes material on Keras, TensorFlow2 and Pandas

Bash Command Line and Shell Scripts Pocket Primer

Download Bash Command Line and Shell Scripts Pocket Primer PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 1683925033
Total Pages : 318 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Bash Command Line and Shell Scripts Pocket Primer by : Oswald Campesato

Download or read book Bash Command Line and Shell Scripts Pocket Primer written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2020-05-28 with total page 318 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the best-selling Pocket Primer series, this book is designed to introduce readers to an assortment of useful command-line utilities that can be combined to create simple, yet powerful shell scripts. While all examples and scripts use the “bash” command set, many of the concepts translate into other command shells (such as sh, ksh, zsh, and csh), including the concept of piping data between commands and the highly versatile sed and awk commands. Aimed at a reader relatively new to working in a bash environment, the book is comprehensive enough to be a good reference and teach a few new techniques to those who already have some experience with creating shell scripts. It contains a variety of code fragments and shell scripts for data scientists, data analysts, and other people who want shell-based solutions to “clean” various types of text files. In addition, the concepts and code samples in this book are useful for people who want to simplify routine tasks. Includes companion files with all of the source code examples (download from the publisher by writing to [email protected]). Features: Takes introductory concepts and commands in bash, and then demonstrates their uses in simple, yet powerful shell scripts Contains an assortment of shell scripts for data scientists, data analysts, and other people who want shell-based solutions to “clean” various types of text files Includes companion files with all of the source code examples (available for download from the publisher)

Data Science Fundamentals Pocket Primer

Download Data Science Fundamentals Pocket Primer PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 1683927311
Total Pages : 428 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Data Science Fundamentals Pocket Primer by : Oswald Campesato

Download or read book Data Science Fundamentals Pocket Primer written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2021-05-12 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the best-selling Pocket Primer series, this book is designed to introduce the reader to the basic concepts of data science using Python 3 and other computer applications. It is intended to be a fast-paced introduction to some basic features of data analytics and also covers statistics, data visualization, linear algebra, and regular expressions. The book includes numerous code samples using Python, NumPy, R, SQL, NoSQL, and Pandas. Companion files with source code and color figures are available. FEATURES: Includes a concise introduction to Python 3 and linear algebra Provides a thorough introduction to data visualization and regular expressions Covers NumPy, Pandas, R, and SQL Introduces probability and statistical concepts Features numerous code samples throughout Companion files with source code and figures

Android

Download Android PDF Online Free

Author :
Publisher : Mercury Learning and Information
ISBN 13 : 1683920899
Total Pages : 322 pages
Book Rating : 4.6/5 (839 download)

DOWNLOAD NOW!


Book Synopsis Android by : Oswald Campesato

Download or read book Android written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2017-04-13 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: As part of the best selling Pocket Primer series, this book provides an overview of the major aspects and the source code to use the latest versions of Android. It has coverage of the fundamental aspects of Android that are illustrated via code samples for versions 4.x through 7.x and features the Google Pixel phone. This Pocket Primer is primarily for self-directed learners who want to learn Android programming and it serves as a starting point for deeper exploration of its numerous applications. Companion disc (also available for downloading from the publisher) with source code, images, and appendices. Features: •Contains latest material on Android VR, graphics/animation, apps, and features the new Google Pixel phone •Includes companion files with all of the source code, appendices, and images from the book •Provides coverage of the fundamental aspects of Android that are illustrated via code samples for versions 4.x through 7.x On the Companion Files: • Source code samples • All images from the text (including 4-color) • Appendices (see Table of Contents)

Deep Learning

Download Deep Learning PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262537559
Total Pages : 298 pages
Book Rating : 4.2/5 (625 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning by : John D. Kelleher

Download or read book Deep Learning written by John D. Kelleher and published by MIT Press. This book was released on 2019-09-10 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.

Data Pipelines Pocket Reference

Download Data Pipelines Pocket Reference PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492087807
Total Pages : 277 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Data Pipelines Pocket Reference by : James Densmore

Download or read book Data Pipelines Pocket Reference written by James Densmore and published by O'Reilly Media. This book was released on 2021-02-10 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data pipelines are the foundation for success in data analytics. Moving data from numerous diverse sources and transforming it to provide context is the difference between having data and actually gaining value from it. This pocket reference defines data pipelines and explains how they work in today's modern data stack. You'll learn common considerations and key decision points when implementing pipelines, such as batch versus streaming data ingestion and build versus buy. This book addresses the most common decisions made by data professionals and discusses foundational concepts that apply to open source frameworks, commercial products, and homegrown solutions. You'll learn: What a data pipeline is and how it works How data is moved and processed on modern data infrastructure, including cloud platforms Common tools and products used by data engineers to build pipelines How pipelines support analytics and reporting needs Considerations for pipeline maintenance, testing, and alerting

Natural Language Processing and Machine Learning for Developers

Download Natural Language Processing and Machine Learning for Developers PDF Online Free

Author :
Publisher :
ISBN 13 : 9781683926184
Total Pages : 754 pages
Book Rating : 4.9/5 (261 download)

DOWNLOAD NOW!


Book Synopsis Natural Language Processing and Machine Learning for Developers by : Oswald Campesato

Download or read book Natural Language Processing and Machine Learning for Developers written by Oswald Campesato and published by . This book was released on 2021-05-28 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for developers who are looking for an introduction to basic concepts in NLP and machine learning. Numerous code samples and listings are included to support myriad topics. The first two chapters contain introductory material for NumPy and Pandas, followed by chapters on NLP concepts, algorithms and toolkits, machine learning, and NLP applications. The final chapters include examples of NLP tasks using TF2 and Keras, the Transformer architecture, BERT-based models, and the GPT family of models. The appendices contain introductory material (including Python code samples) for various topics, including data and statistics, Python3, regular expressions, Keras, TF2, Matplotlib and Seaborn. Companion files with source code and figures are included. FEATURES: Covers extensive topics related to natural language processing and machine learning Includes separate appendices on data and statistics, regular expressions, data visualization, Python, Keras, TF2, and more Features companion files with source code and color figures from the book.

The Robotic Process Automation Handbook

Download The Robotic Process Automation Handbook PDF Online Free

Author :
Publisher : Apress
ISBN 13 : 1484257294
Total Pages : 359 pages
Book Rating : 4.4/5 (842 download)

DOWNLOAD NOW!


Book Synopsis The Robotic Process Automation Handbook by : Tom Taulli

Download or read book The Robotic Process Automation Handbook written by Tom Taulli and published by Apress. This book was released on 2020-02-28 with total page 359 pages. Available in PDF, EPUB and Kindle. Book excerpt: While Robotic Process Automation (RPA) has been around for about 20 years, it has hit an inflection point because of the convergence of cloud computing, big data and AI. This book shows you how to leverage RPA effectively in your company to automate repetitive and rules-based processes, such as scheduling, inputting/transferring data, cut and paste, filling out forms, and search. Using practical aspects of implementing the technology (based on case studies and industry best practices), you’ll see how companies have been able to realize substantial ROI (Return On Investment) with their implementations, such as by lessening the need for hiring or outsourcing. By understanding the core concepts of RPA, you’ll also see that the technology significantly increases compliance – leading to fewer issues with regulations – and minimizes costly errors. RPA software revenues have recently soared by over 60 percent, which is the fastest ramp in the tech industry, and they are expected to exceed $1 billion by the end of 2019. It is generally seamless with legacy IT environments, making it easier for companies to pursue a strategy of digital transformation and can even be a gateway to AI. The Robotic Process Automation Handbook puts everything you need to know into one place to be a part of this wave. What You'll Learn Develop the right strategy and planDeal with resistance and fears from employeesTake an in-depth look at the leading RPA systems, including where they are most effective, the risks and the costsEvaluate an RPA system Who This Book Is For IT specialists and managers at mid-to-large companies

Learning Deep Learning

Download Learning Deep Learning PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0137470290
Total Pages : 1106 pages
Book Rating : 4.1/5 (374 download)

DOWNLOAD NOW!


Book Synopsis Learning Deep Learning by : Magnus Ekman

Download or read book Learning Deep Learning written by Magnus Ekman and published by Addison-Wesley Professional. This book was released on 2021-07-19 with total page 1106 pages. Available in PDF, EPUB and Kindle. Book excerpt: NVIDIA's Full-Color Guide to Deep Learning: All You Need to Get Started and Get Results "To enable everyone to be part of this historic revolution requires the democratization of AI knowledge and resources. This book is timely and relevant towards accomplishing these lofty goals." -- From the foreword by Dr. Anima Anandkumar, Bren Professor, Caltech, and Director of ML Research, NVIDIA "Ekman uses a learning technique that in our experience has proven pivotal to success—asking the reader to think about using DL techniques in practice. His straightforward approach is refreshing, and he permits the reader to dream, just a bit, about where DL may yet take us." -- From the foreword by Dr. Craig Clawson, Director, NVIDIA Deep Learning Institute Deep learning (DL) is a key component of today's exciting advances in machine learning and artificial intelligence. Learning Deep Learning is a complete guide to DL. Illuminating both the core concepts and the hands-on programming techniques needed to succeed, this book is ideal for developers, data scientists, analysts, and others--including those with no prior machine learning or statistics experience. After introducing the essential building blocks of deep neural networks, such as artificial neurons and fully connected, convolutional, and recurrent layers, Magnus Ekman shows how to use them to build advanced architectures, including the Transformer. He describes how these concepts are used to build modern networks for computer vision and natural language processing (NLP), including Mask R-CNN, GPT, and BERT. And he explains how a natural language translator and a system generating natural language descriptions of images. Throughout, Ekman provides concise, well-annotated code examples using TensorFlow with Keras. Corresponding PyTorch examples are provided online, and the book thereby covers the two dominating Python libraries for DL used in industry and academia. He concludes with an introduction to neural architecture search (NAS), exploring important ethical issues and providing resources for further learning. Explore and master core concepts: perceptrons, gradient-based learning, sigmoid neurons, and back propagation See how DL frameworks make it easier to develop more complicated and useful neural networks Discover how convolutional neural networks (CNNs) revolutionize image classification and analysis Apply recurrent neural networks (RNNs) and long short-term memory (LSTM) to text and other variable-length sequences Master NLP with sequence-to-sequence networks and the Transformer architecture Build applications for natural language translation and image captioning NVIDIA's invention of the GPU sparked the PC gaming market. The company's pioneering work in accelerated computing--a supercharged form of computing at the intersection of computer graphics, high-performance computing, and AI--is reshaping trillion-dollar industries, such as transportation, healthcare, and manufacturing, and fueling the growth of many others. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Deep Learning for Coders with fastai and PyTorch

Download Deep Learning for Coders with fastai and PyTorch PDF Online Free

Author :
Publisher : O'Reilly Media
ISBN 13 : 1492045497
Total Pages : 624 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning for Coders with fastai and PyTorch by : Jeremy Howard

Download or read book Deep Learning for Coders with fastai and PyTorch written by Jeremy Howard and published by O'Reilly Media. This book was released on 2020-06-29 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Hands-on TinyML

Download Hands-on TinyML PDF Online Free

Author :
Publisher : BPB Publications
ISBN 13 : 9355518447
Total Pages : 309 pages
Book Rating : 4.3/5 (555 download)

DOWNLOAD NOW!


Book Synopsis Hands-on TinyML by : Rohan Banerjee

Download or read book Hands-on TinyML written by Rohan Banerjee and published by BPB Publications. This book was released on 2023-06-09 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to deploy complex machine learning models on single board computers, mobile phones, and microcontrollers KEY FEATURES ● Gain a comprehensive understanding of TinyML's core concepts. ● Learn how to design your own TinyML applications from the ground up. ● Explore cutting-edge models, hardware, and software platforms for developing TinyML. DESCRIPTION TinyML is an innovative technology that empowers small and resource-constrained edge devices with the capabilities of machine learning. If you're interested in deploying machine learning models directly on microcontrollers, single board computers, or mobile phones without relying on continuous cloud connectivity, this book is an ideal resource for you. The book begins with a refresher on Python, covering essential concepts and popular libraries like NumPy and Pandas. It then delves into the fundamentals of neural networks and explores the practical implementation of deep learning using TensorFlow and Keras. Furthermore, the book provides an in-depth overview of TensorFlow Lite, a specialized framework for optimizing and deploying models on edge devices. It also discusses various model optimization techniques that reduce the model size without compromising performance. As the book progresses, it offers a step-by-step guidance on creating deep learning models for object detection and face recognition specifically tailored for the Raspberry Pi. You will also be introduced to the intricacies of deploying TensorFlow Lite applications on real-world edge devices. Lastly, the book explores the exciting possibilities of using TensorFlow Lite on microcontroller units (MCUs), opening up new opportunities for deploying machine learning models on resource-constrained devices. Overall, this book serves as a valuable resource for anyone interested in harnessing the power of machine learning on edge devices. WHAT YOU WILL LEARN ● Explore different hardware and software platforms for designing TinyML. ● Create a deep learning model for object detection using the MobileNet architecture. ● Optimize large neural network models with the TensorFlow Model Optimization Toolkit. ● Explore the capabilities of TensorFlow Lite on microcontrollers. ● Build a face recognition system on a Raspberry Pi. ● Build a keyword detection system on an Arduino Nano. WHO THIS BOOK IS FOR This book is designed for undergraduate and postgraduate students in the fields of Computer Science, Artificial Intelligence, Electronics, and Electrical Engineering, including MSc and MCA programs. It is also a valuable reference for young professionals who have recently entered the industry and wish to enhance their skills. TABLE OF CONTENTS 1. Introduction to TinyML and its Applications 2. Crash Course on Python and TensorFlow Basics 3. Gearing with Deep Learning 4. Experiencing TensorFlow 5. Model Optimization Using TensorFlow 6. Deploying My First TinyML Application 7. Deep Dive into Application Deployment 8. TensorFlow Lite for Microcontrollers 9. Keyword Spotting on Microcontrollers 10. Conclusion and Further Reading Appendix