Techniques for Numerically Efficient Analysis of Multi-scale Problems in Computational Electromagnetics

Download Techniques for Numerically Efficient Analysis of Multi-scale Problems in Computational Electromagnetics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Techniques for Numerically Efficient Analysis of Multi-scale Problems in Computational Electromagnetics by : Kapil Sharma

Download or read book Techniques for Numerically Efficient Analysis of Multi-scale Problems in Computational Electromagnetics written by Kapil Sharma and published by . This book was released on 2017 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Multi-scale problems in numerical electromagnetics are becoming increasingly common with the advent and widespread usage of compact mobile phones, body area networks, small and nano antennas, sensors, high-speed interconnects, integrated circuits and complex electronic packaging structures, to name just a few commercial applications. Numerical electromagnetic modeling and simulation of structures with multi-scale features is highly challenging due to the fact that electrically small as well as large features are simultaneously present in the model which demands for discretization of the computational domain such that the number of degrees of freedom is very large, thus, levying a heavy burden on computational resources. The multi-scale nature of a given problem also exacerbates the challenge of generating very fine meshes which do not introduce instabilities or ill-conditioned behaviors. In this work we introduce a hybrid technique, which combines frequency domain and time domain techniques in a manner such that the fine features (electrically small) of the object being modeled are handled by the Method of Moments (MoM) technique while the electrically large parts of the structure are dealt with by using the Finite-Difference Time-Domain (FDTD) technique in order to reduce the computational burden. Recently, structures with multi-scale features have been simulated by using the dipole moment (DM) approach combined with the FDTD technique to handle fine features in a multi-scale geometry. However, when the size of the scatterer becomes larger in terms of the wavelength and the quasi-static assumption becomes invalid, extensive modifications of the DM/FDTD hybrid approach are needed resulting in a high computational cost.The research proposes a novel hybrid FDTD technique, which combines the Method of Moments and the Finite-Difference Time-Domain techniques directly in the time domain circumventing the need to carry out frequency transform calculations as required in the DM approach when the object size is not small (size>/20). The proposed technique utilizes piecewise sinusoidal basis functions to represent the currents on arbitrarily shaped wires with fine features, and modified RWG basis function for surfaces. The fields scattered by the object with fine features in MoM region are computed in the time domain on a planar interface. The time domain fields obtained at the planar interface are then combined with the FDTD update equations. In contrast to the existing techniques used to handle this type of problems, the proposed technique is both efficient as well as stable.

Multi-scale Techniques in Computational Electromagnetics

Download Multi-scale Techniques in Computational Electromagnetics PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 189 pages
Book Rating : 4.:/5 (66 download)

DOWNLOAD NOW!


Book Synopsis Multi-scale Techniques in Computational Electromagnetics by : Jonathan Neil Bringuier

Download or read book Multi-scale Techniques in Computational Electromagnetics written by Jonathan Neil Bringuier and published by . This book was released on 2010 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last several decades have experienced an extraordinarily focused effort on developing general-purpose numerical methods in computational electromagnetics (CEM) that can accurately model a wide variety of electromagnetic systems. In turn, this has led to a number of techniques, such as the Method of Moments (MoM), the Finite Element Method (FEM), and the Finite-Difference-Time-Domain (FDTD), each of which exhibits their own advantages and disadvantages. In particular, the FDTD has become a widely used tool for modeling electromagnetic systems, and since it solves Maxwell's equations directly--without having to derive Green's Functions or to solve a matrix equation or--it experiences little or no difficulties when handling complex inhomogeneous media. Furthermore, the FDTD has the additional advantage that it can be easily parallelized; and, hence, it can model large systems using supercomputing clusters. However, the FDTD method is not without its disadvantages when used on platforms with limited computational resources. For many problems, the domain size can be extremely large in terms of the operating wavelengths, whereas many of the objects have fine features (e.g., Body Area Networks). Since FDTD requires a meshing of the entire computational domain, presence of these fine features can significantly increase the computational burden; in fact, in many cases, it can render the problem either too time-consuming or altogether impractical to solve. This has served as the primary motivation in this thesis for developing multi-scale techniques that can circumvent many of the problems associated with CEM, and in particular with time domain methods, such as the FDTD. Numerous multi-scale problems that frequently arise in CEM have been investigated in this work. These include: 1) The coupling problem between two conformal antennas systems on complex platforms; 2) Rigorous modeling of Body Area Networks (BANs), and some approximate human phantom models for path loss characterization; 3) Efficient modeling of fine features in the FDTD method and the introduction of the dipole moment method for finite methods; and, 4) Time domain scattering by thin wire structures using a novel Time-Domain- Electric-Field-Integral-Equation (TD-EFIE) formulation. Furthermore, it is illustrated, via several examples, that each problem requires a unique approach. Finally, the results obtained by each technique have been compared with other existing numerical methods for the purpose of validation.

Numerical Analysis of Multiscale Problems

Download Numerical Analysis of Multiscale Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642220614
Total Pages : 376 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Numerical Analysis of Multiscale Problems by : Ivan G. Graham

Download or read book Numerical Analysis of Multiscale Problems written by Ivan G. Graham and published by Springer Science & Business Media. This book was released on 2012-01-05 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: The 91st London Mathematical Society Durham Symposium took place from July 5th to 15th 2010, with more than 100 international participants attending. The Symposium focused on Numerical Analysis of Multiscale Problems and this book contains 10 invited articles from some of the meeting's key speakers, covering a range of topics of contemporary interest in this area. Articles cover the analysis of forward and inverse PDE problems in heterogeneous media, high-frequency wave propagation, atomistic-continuum modeling and high-dimensional problems arising in modeling uncertainty. Novel upscaling and preconditioning techniques, as well as applications to turbulent multi-phase flow, and to problems of current interest in materials science are all addressed. As such this book presents the current state-of-the-art in the numerical analysis of multiscale problems and will be of interest to both practitioners and mathematicians working in those fields.

Numerical Methods and Analysis of Multiscale Problems

Download Numerical Methods and Analysis of Multiscale Problems PDF Online Free

Author :
Publisher :
ISBN 13 : 9783319508658
Total Pages : 123 pages
Book Rating : 4.5/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods and Analysis of Multiscale Problems by : Alexandre L. Madureira

Download or read book Numerical Methods and Analysis of Multiscale Problems written by Alexandre L. Madureira and published by . This book was released on 2017 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Computational Electromagnetics

Download Computational Electromagnetics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642557457
Total Pages : 217 pages
Book Rating : 4.6/5 (425 download)

DOWNLOAD NOW!


Book Synopsis Computational Electromagnetics by : Carsten Carstensen

Download or read book Computational Electromagnetics written by Carsten Carstensen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dimmed outlines of phenomenal things all into one another unless we put on the merge focusing-glass of theory, and screw it up some times to one pitch of definition and sometimes to another, so as to see down into different depths through the great millstone of the world James Clerk Maxwell (1831 - 1879) For a long time after the foundation of the modern theory of electromag netism by James Clerk Maxwell in the 19th century, the mathematical ap proach to electromagnetic field problems was for a long time dominated by the analytical investigation of Maxwell's equations. The rapid development of computing facilities during the last century has then necessitated appropriate numerical methods and algorithmic tools for the simulation of electromagnetic phenomena. During the last few decades, a new research area "Computational Electromagnetics" has emerged com prising the mathematical analysis, design, implementation, and application of numerical schemes to simulate all kinds of relevant electromagnetic pro cesses. This area is still rapidly evolving with a wide spectrum of challenging issues featuring, among others, such problems as the proper choice of spatial discretizations (finite differences, finite elements, finite volumes, boundary elements), fast solvers for the discretized equations (multilevel techniques, domain decomposition methods, multipole, panel clustering), and multiscale aspects in microelectronics and micromagnetics.

Computational Electromagnetics—Retrospective and Outlook

Download Computational Electromagnetics—Retrospective and Outlook PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9812870954
Total Pages : 328 pages
Book Rating : 4.8/5 (128 download)

DOWNLOAD NOW!


Book Synopsis Computational Electromagnetics—Retrospective and Outlook by : Iftikhar Ahmed

Download or read book Computational Electromagnetics—Retrospective and Outlook written by Iftikhar Ahmed and published by Springer. This book was released on 2014-08-27 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book will cover the past, present and future developments of field theory and computational electromagnetics. The first two chapters will give an overview of the historical developments and the present the state-of-the-art in computational electromagnetics. These two chapters will set the stage for discussing recent progress, new developments, challenges, trends and major directions in computational electromagnetics with three main emphases: a. Modeling of ever larger structures with multi-scale dimensions and multi-level descriptions (behavioral, circuit, network and field levels) and transient behaviours b. Inclusions of physical effects other than electromagnetic: quantum effects, thermal effects, mechanical effects and nano scale features c. New developments in available computer hardware, programming paradigms (MPI, Open MP, CUDA and Open CL) and the associated new modeling approaches These are the current emerging topics in the area of computational electromagnetics and may provide readers a comprehensive overview of future trends and directions in the area. The book is written for students, research scientists, professors, design engineers and consultants who engaged in the fields of design, analysis and research of the emerging technologies related to computational electromagnetics, RF/microwave, optimization, new numerical methods, as well as accelerator simulator, dispersive materials, nano-antennas, nano-waveguide, nano-electronics, terahertz applications, bio-medical and material sciences. The book may also be used for those involved in commercializing electromagnetic and related emerging technologies, sensors and the semiconductor industry. The book can be used as a reference book for graduates and post graduates. It can also be used as a text book for workshops and continuing education for researchers and design engineers.

Multiscale Methods in Science and Engineering

Download Multiscale Methods in Science and Engineering PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540264442
Total Pages : 300 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Methods in Science and Engineering by : Björn Engquist

Download or read book Multiscale Methods in Science and Engineering written by Björn Engquist and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale problems naturally pose severe challenges for computational science and engineering. The smaller scales must be well resolved over the range of the larger scales. Challenging multiscale problems are very common and are found in e.g. materials science, fluid mechanics, electrical and mechanical engineering. Homogenization, subgrid modelling, heterogeneous multiscale methods, multigrid, multipole, and adaptive algorithms are examples of methods to tackle these problems. This volume is an overview of current mathematical and computational methods for problems with multiple scales with applications in chemistry, physics and engineering.

Theory and Computation of Electromagnetic Fields

Download Theory and Computation of Electromagnetic Fields PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111910808X
Total Pages : 744 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Theory and Computation of Electromagnetic Fields by : Jian-Ming Jin

Download or read book Theory and Computation of Electromagnetic Fields written by Jian-Ming Jin and published by John Wiley & Sons. This book was released on 2015-08-10 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reviews the fundamental concepts behind the theory and computation of electromagnetic fields The book is divided in two parts. The first part covers both fundamental theories (such as vector analysis, Maxwell’s equations, boundary condition, and transmission line theory) and advanced topics (such as wave transformation, addition theorems, and fields in layered media) in order to benefit students at all levels. The second part of the book covers the major computational methods for numerical analysis of electromagnetic fields for engineering applications. These methods include the three fundamental approaches for numerical analysis of electromagnetic fields: the finite difference method (the finite difference time-domain method in particular), the finite element method, and the integral equation-based moment method. The second part also examines fast algorithms for solving integral equations and hybrid techniques that combine different numerical methods to seek more efficient solutions of complicated electromagnetic problems. Theory and Computation of Electromagnetic Fields, Second Edition: Provides the foundation necessary for graduate students to learn and understand more advanced topics Discusses electromagnetic analysis in rectangular, cylindrical and spherical coordinates Covers computational electromagnetics in both frequency and time domains Includes new and updated homework problems and examples Theory and Computation of Electromagnetic Fields, Second Edition is written for advanced undergraduate and graduate level electrical engineering students. This book can also be used as a reference for professional engineers interested in learning about analysis and computation skills.

Analytical and Computational Methods in Electromagnetics

Download Analytical and Computational Methods in Electromagnetics PDF Online Free

Author :
Publisher : Artech House
ISBN 13 : 1596933860
Total Pages : 528 pages
Book Rating : 4.5/5 (969 download)

DOWNLOAD NOW!


Book Synopsis Analytical and Computational Methods in Electromagnetics by : Ramesh Garg

Download or read book Analytical and Computational Methods in Electromagnetics written by Ramesh Garg and published by Artech House. This book was released on 2008 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Achieve optimal microwave system performance by mastering the principles and methods underlying today's powerful computational tools and commercial software in electromagnetics. This authoritative resource offers you clear and complete explanation of this essential electromagnetics knowledge, providing you with the analytical background you need to understand such key approaches as MoM (method of moments), FDTD (Finite Difference Time Domain) and FEM (Finite Element Method), and Green's functions. This comprehensive book includes all math necessary to master the material. Moreover, it features numerous solved problems that help ensure your understanding of key concepts throughout the book.

Numerical Techniques in Electromagnetics, Second Edition

Download Numerical Techniques in Electromagnetics, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780849313950
Total Pages : 764 pages
Book Rating : 4.3/5 (139 download)

DOWNLOAD NOW!


Book Synopsis Numerical Techniques in Electromagnetics, Second Edition by : Matthew N.O. Sadiku

Download or read book Numerical Techniques in Electromagnetics, Second Edition written by Matthew N.O. Sadiku and published by CRC Press. This book was released on 2000-07-12 with total page 764 pages. Available in PDF, EPUB and Kindle. Book excerpt: As the availability of powerful computer resources has grown over the last three decades, the art of computation of electromagnetic (EM) problems has also grown - exponentially. Despite this dramatic growth, however, the EM community lacked a comprehensive text on the computational techniques used to solve EM problems. The first edition of Numerical Techniques in Electromagnetics filled that gap and became the reference of choice for thousands of engineers, researchers, and students. The Second Edition of this bestselling text reflects the continuing increase in awareness and use of numerical techniques and incorporates advances and refinements made in recent years. Most notable among these are the improvements made to the standard algorithm for the finite difference time domain (FDTD) method and treatment of absorbing boundary conditions in FDTD, finite element, and transmission-line-matrix methods. The author also added a chapter on the method of lines. Numerical Techniques in Electromagnetics continues to teach readers how to pose, numerically analyze, and solve EM problems, give them the ability to expand their problem-solving skills using a variety of methods, and prepare them for research in electromagnetism. Now the Second Edition goes even further toward providing a comprehensive resource that addresses all of the most useful computation methods for EM problems.

Numerical Analysis of Multiscale Computations

Download Numerical Analysis of Multiscale Computations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642219438
Total Pages : 432 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Numerical Analysis of Multiscale Computations by : Björn Engquist

Download or read book Numerical Analysis of Multiscale Computations written by Björn Engquist and published by Springer Science & Business Media. This book was released on 2011-10-14 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a snapshot of current research in multiscale modeling, computations and applications. It covers fundamental mathematical theory, numerical algorithms as well as practical computational advice for analysing single and multiphysics models containing a variety of scales in time and space. Complex fluids, porous media flow and oscillatory dynamical systems are treated in some extra depth, as well as tools like analytical and numerical homogenization, and fast multipole method.

ADVD FINITE ELEMENT METHODOLOG

Download ADVD FINITE ELEMENT METHODOLOG PDF Online Free

Author :
Publisher : Open Dissertation Press
ISBN 13 : 9781361013717
Total Pages : 154 pages
Book Rating : 4.0/5 (137 download)

DOWNLOAD NOW!


Book Synopsis ADVD FINITE ELEMENT METHODOLOG by : Yanlin Li

Download or read book ADVD FINITE ELEMENT METHODOLOG written by Yanlin Li and published by Open Dissertation Press. This book was released on 2017-01-26 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation, "Advanced Finite Element Methodology for Low-frequency and Static Electromagnetic Modeling" by Yanlin, Li, 黎燕林, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: The design of state-of-the-art microelectronic devices poses unprecedented challenges to computational electromagnetics (CEM), which is cursed by the null space of curl operator. Both the low-frequency catastrophe for dynamic electromagnetic problems and non-uniqueness for magnetostatic problems originate from the null space. Although a few remedies are proposed during the last decade, a theoretically rigorous and numerically efficient solution is still on its way. Toward this end, this thesis constructs a finite element framework, which consists of generalized gauge condition, compatible finite element discretization, sparse approximate inverse (SAI) technique and static incomplete LU (ILU) preconditioned iterative solution. The generalized gauge condition introduces a gauge operator, which is comparable in magnitude and complementary in space with the double curl operator, into the original governing equations. The null space is removed and the combined operator becomes positive definite. However, the combined operator is so complicated that its discretization and matrix representation are unclear. Thanks to the theory of differential forms, the mapping of the quantity of interest from one form to another becomes distinct. Hence, the compatible discretization can be carried out based on the versatile Whitney elements. The resultant matrix system is much better conditioned than that of the ungauged one, whereas more treatment is still necessary to make it less sparse and faster convergent. The SAI and ILU preconditioning techniques provide an excellent solution to this difficulty. The former approximates the inverse of a mass matrix by a nearly-diagonal matrix, which greatly reduces the sparsity of the matrix system. The later shifts all the eigenvalues to the neighborhood of 1 and thus achieves an extremely fast convergence. Moreover, the static incomplete LU (ILU) preconditioning scheme is well suited to wideband analysis, because the preconditioner is calculated just once for a wide range of frequency. This framework is verified, by low-frequency circuit problems as well as magnetostatic ones, to be accurate and efficient. In addition, more effort is devoted to explore other possibilities to solve the aforementioned problem. The application of loop basis functions is also a promising solution, provided that the redundant loops in the mesh can be removed. Finally, the displacement current effect is studied in depth by a full-wave semianalytical solution of wireless power transfer into dispersive layered media. The comparison between the results with and without the displacement current advocates the full-wave electromagnetic modeling for multi-scale problems and wideband analysis. Subjects: Finite element method Electromagnetism - Computer simulation

Computational Electromagnetics

Download Computational Electromagnetics PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387261605
Total Pages : 232 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Computational Electromagnetics by : Anders Bondeson

Download or read book Computational Electromagnetics written by Anders Bondeson and published by Springer Science & Business Media. This book was released on 2006-02-07 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes most popular computational methods used to solve problems in electromagnetics Matlab code is included throughout, so that the reader can implement the various techniques discussed Exercises included

Multiscale Problems: Theory, Numerical Approximation And Applications

Download Multiscale Problems: Theory, Numerical Approximation And Applications PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9814458120
Total Pages : 314 pages
Book Rating : 4.8/5 (144 download)

DOWNLOAD NOW!


Book Synopsis Multiscale Problems: Theory, Numerical Approximation And Applications by : Alain Damlamian

Download or read book Multiscale Problems: Theory, Numerical Approximation And Applications written by Alain Damlamian and published by World Scientific. This book was released on 2011-10-13 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this is on the latest developments related to the analysis of problems in which several scales are presented. After a theoretical presentation of the theory of homogenization in the periodic case, the other contributions address a wide range of applications in the fields of elasticity (asymptotic behavior of nonlinear elastic thin structures, modeling of junction of a periodic family of rods with a plate) and fluid mechanics (stationary Navier-Stokes equations in porous media). Other applications concern the modeling of new composites (electromagnetic and piezoelectric materials) and imperfect transmission problems. A detailed approach of numerical finite element methods is also investigated.

Numerical Methods for Multiscale Inverse Problems

Download Numerical Methods for Multiscale Inverse Problems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 210 pages
Book Rating : 4.:/5 (881 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Multiscale Inverse Problems by : Christina A. Frederick

Download or read book Numerical Methods for Multiscale Inverse Problems written by Christina A. Frederick and published by . This book was released on 2014 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation focuses on inverse problems for partial differential equations with multiscale coefficients in which the goal is to determine the coefficients in the equation using solution data. Such problems pose a huge computational challenge, in particular when the coefficients are of multiscale form. When faced with balancing computational cost with accuracy, most approaches only deal with models of large scale behavior and, for example, account for microscopic processes by using effective or empirical equations of state on the continuum scale to simplify computations. Obtaining these models often results in the loss of the desired fine scale details. In this thesis we introduce ways to overcome this issue using a multiscale approach. The first part of the thesis establishes the close relation between computational grids in multiscale modeling and sampling strategies developed in information theory. The theory developed is based on the mathematical analysis of multiscale functions of the type that are studied in averaging and homogenization theory and in multiscale modeling. Typical examples are two-scale functions f (x, x/[epsilon]), (0

Computational Methods for Electromagnetics

Download Computational Methods for Electromagnetics PDF Online Free

Author :
Publisher : Wiley-IEEE Press
ISBN 13 :
Total Pages : 602 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for Electromagnetics by : Andrew F. Peterson

Download or read book Computational Methods for Electromagnetics written by Andrew F. Peterson and published by Wiley-IEEE Press. This book was released on 1998 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: "'Computational Methods for Electromagnetics' is an indispensable resource for making efficient and accurate formulations for electromagnetics applications and their numerical treatment. Employing a unified coherent approach that is unmatched in the field, the authors detail both integral and differential equations using the method of moments and finite-element procedures. In addition, readers will gain a thorough understanding of numerical solution procedures. Detail is provided to enable the reader to implement concepts in software and, in addition, a collection of related computer programs are available via the Internet. 'Computational Methods for Electromagnetics' is designed for graduate-level classroom use or self-study, and every chapter includes problems. It will also be of particular interest to engineers working in the aerospace, defense, telecommunications, wireless, electromagnetic compatibility, and electronic packaging industries." -- Amazon.com.

Essentials of Computational Electromagnetics

Download Essentials of Computational Electromagnetics PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470829621
Total Pages : 291 pages
Book Rating : 4.4/5 (78 download)

DOWNLOAD NOW!


Book Synopsis Essentials of Computational Electromagnetics by : Xin-Qing Sheng

Download or read book Essentials of Computational Electromagnetics written by Xin-Qing Sheng and published by John Wiley & Sons. This book was released on 2012-05-15 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifying practical issues, such as how to convert discretized formulations into computer programs, and the numerical characteristics of the computer programs. In this book, the authors elaborate the above three methods in CEM using practical case studies, explaining their own research experiences along with a review of current literature. A full analysis is provided for typical cases, including characteristics of numerical methods, helping beginners to develop a quick and deep understanding of the essentials of CEM. Outlines practical issues, such as how to convert discretized formulations into computer programs Gives typical computer programs and their numerical characteristics along with line by line explanations of programs Uses practical examples from the authors' own work as well as in the current literature Includes exercise problems to give readers a better understanding of the material Introduces the available commercial software and their limitations This book is intended for graduate-level students in antennas and propagation, microwaves, microelectronics, and electromagnetics. This text can also be used by researchers in electrical and electronic engineering, and software developers interested in writing their own code or understanding the detailed workings of code. Companion website for the book: www.wiley.com/go/sheng/cem